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Abstract
The	conservation	and	management	of	wildlife	populations,	particularly	for	threatened	
and	endangered	species	are	greatly	aided	with	abundance,	growth	rate,	and	density	
measures.	Traditional	methods	of	estimating	abundance	and	related	metrics	represent	
trade-offs	in	effort	and	precision	of	estimates.	Pedigree	reconstruction	is	an	emerg-
ing,	attractive	alternate	approach	because	its	use	of	one-time,	noninvasive	sampling	
of individuals to infer the existence of unsampled individuals. However, advances in 
pedigree	reconstruction	could	improve	its	utility,	including	forming	a	measure	of	pre-
cision	for	the	method,	establishing	required	spatial	sampling	effort	for	accurate	esti-
mates,	ascertaining	the	spatial	extent	of	abundance	estimates	derived	from	pedigree	
reconstruction,	and	assessing	how	population	density	affects	the	estimator's	perfor-
mance.	Using	 established	 relationships	 for	 a	 stochastic,	 spatially	 explicit	 simulated	
moose (Alces americanus) population, pedigree reconstruction provided accurate esti-
mates	of	the	adult	moose	population	size	and	trend.	Novel	bootstrapped	confidence	
intervals	performed	as	expected	with	 intensive	sampling	but	underperformed	with	
moderate	 sampling	efforts	 that	 could	produce	abundance	estimates	with	 low	bias.	
Adult	population	estimates	more	closely	reflected	the	total	number	of	adults	in	the	
extant	population,	rather	than	number	of	adults	inhabiting	the	area	where	sampling	
occurred.	Increasing	sampling	effort,	measured	as	the	proportion	of	individuals	sam-
pled	and	as	the	proportion	of	a	hypothetical	study	area,	yielded	similar	asymptotic	
patterns	over	time.	Simulations	indicated	a	positive	relationship	between	animal	den-
sity	and	sampling	effort	required	for	unbiased	estimates.	These	results	indicate	that	
pedigree	reconstruction	can	produce	accurate	abundance	estimates	and	may	be	par-
ticularly	valuable	for	surveying	smaller	areas	and	low-density	populations.
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1  |  INTRODUC TION

Precise	 and	 unbiased	 estimates	 of	 abundance,	 growth	 rate,	 and	
density	are	often	critical	 for	developing	effective	wildlife	manage-
ment	strategies,	especially	for	threatened	and	endangered	species	
(Williams	et	al.,	2002).	However,	such	estimates	can	be	difficult	to	
obtain	(Ripple	et	al.,	2015).	Many	species	inhabit	remote	areas	where	
terrain	 and	 vegetation	 conditions	 make	 surveying	 difficult.	 Some	
species	also	avoid	humans	or	are	secretive,	limiting	direct	observa-
tion	(Morellet	et	al.,	2007; Ripple et al., 2015).	Abundance	estimates	
generally	must	account	the	inability	of	observer(s)	to	detect	all	indi-
viduals,	as	complete,	unbiased	counts	are	rarely	possible.	However,	
methods	to	estimate	population	size	are	often	costly	and,	 in	many	
cases, impractical due to constraints on time, funding, and logistics 
(Morellet	et	al.,	2007;	Rabe	et	al.,	2002).	As	many	wildlife	popula-
tions face threats from a changing climate and other anthropogenic 
pressures (Ripple et al., 2015),	 improved	 abundance	 estimators	
would	be	beneficial,	particularly	for	species	and	populations	that	are	
difficult	to	survey.

There	 are	 several	 methods	 of	 estimating	 population	 size,	
trend,	and	density,	and	their	applications	represent	trade-offs	 in	
the	 spatial	 scale	 surveyed,	 effort	 (and	 cost)	 required,	 and	preci-
sion	 of	 abundance	 estimates.	 For	 species	 that	 are	 not	 easily	 in-
dividually	 identifiable,	 raw	 counts	 of	 individuals	 made	 from	 the	
air-	or	ground-based	transects	are	adjusted	to	account	for	detec-
tion	 probability	with	 sightability	 (Bontaites	 et	 al.,	2000;	 Samuel	
et al., 1987)	or	distance	sampling	models	 (Buckland	et	al.,	1993). 
These	survey	methods	can	be	used	to	monitor	populations	across	
large	areas,	but	often	are	prohibitively	expensive	to	conduct	reg-
ularly	 (Cook	 &	 Jacobson,	 1979;	 Rabe	 et	 al.,	 2002)	 and	may	 not	
provide	 estimates	 precise	 enough	 of	 abundance	 for	 low-density	
or	 cryptic	 species	 that	 are	 useful	 for	 their	 conservation	 (Olson	
et al., 2005).	 For	 species	 in	 which	 individuals	 can	 be	 uniquely	
distinguished	 (i.e.,	 through	 distinctive	 physical	 characteristics,	
researcher marks like tags or collars, or genetic markers), capture–
mark–recapture	 (CMR;	 Otis	 et	 al.,	 1978;	 Pollock	 &	 Otto,	 1983) 
and,	more	recently,	spatial	capture	recapture	(SCR;	Efford,	2004; 
Borchers	&	Efford,	2008) models are common methods for esti-
mating	abundance.	These	methods	use	sighting	data	of	individuals	
over	 repeated	 surveys	 to	 estimate	 abundance	 while	 accounting	
for	imperfect	detection	(Pollock	&	Otto,	1983). These methods re-
quire	repeated	surveys	to	collect	observation	data,	which	can	in-
crease	costs	and	still	may	not	yield	enough	information	to	identify	
population	trends,	particularly	for	wide-ranging,	low-density	spe-
cies	(Lukacs	&	Burnham,	2005;	Royle	et	al.,	2018).	Most	recently,	
close-kin	capture–mark–recapture	methods	relax	the	assumption	
of “recapture” to “recapture of close kin”, opening new avenues 
of	population	estimation	using	samples	from	both	living	and	dead	
individuals	 (Bravington	 et	 al.,	 2016;	 Marcy-Quay	 et	 al.,	 2020). 
Finally,	abundance	methods	using	animal	sign	or	public	sightings	
reduce	 costs	 and	 effort	 for	 data	 collection,	 but	 generally	 yield	
lower	precision	compared	to	measures	of	abundance	that	account	
for	detection	(Härkönen	&	Heikkilä,	1999; Rönnegård et al., 2008).

Pedigree	 reconstruction	 is	 an	 emerging	 contribution	 to	 the	
growing	 toolkit	 of	 abundance	estimation	methods	 (Arandjelovic	&	
Vigilant, 2018)	and	a	useful	approach	for	estimating	abundance	of	
low-density,	 cryptic	 species	 that	 are	 otherwise	 difficult	 to	 study.	
Pedigree	reconstruction	uses	genetic	data	collected	from	many	indi-
viduals to create a pedigree for the population (Figure 1).	Pedigrees	
are	used	for	a	variety	of	conservation	applications	(Blouin,	2003) as 
they	provide	 valuable	population	genetics	measures	 related	 to	 in-
breeding	(Jones	et	al.,	2002;	Liberg	et	al.,	2005) and effective pop-
ulation	size	(Luikart	et	al.,	2010).	Pedigree	reconstruction	also	infers	
the	 existence	 and	 genotypes	 of	 individuals	 that	 are	 not	 directly	
sampled,	which	allows	for	estimates	of	population	size.	This	is	pos-
sible	when	an	offspring	and	only	one	of	 its	parents	are	sampled—
in this case, another (unsampled) parent must exist as a portion of 
its	genetic	information	is	contained	in	the	offspring's	genotype.	By	
combining	data	 on	 relationships	 between	 sampled	 individuals	 and	
inferred unsampled individuals, pedigree reconstruction can pro-
vide	 an	 abundance	 estimator	 by	 correcting	 the	 count	 of	 sampled	
and	 inferred	 individuals	with	 these	 “invisible”	 individuals	 (Creel	 &	
Rosenblatt,	2013; Figure 1).

The	 prospect	 of	 estimating	 abundance	 using	 pedigree	 recon-
struction	 is	 an	 active	 area	 of	 inquiry	 (Creel	 &	 Rosenblatt,	 2013; 
Ekblom	 et	 al.,	 2021;	 Hettiarachchige	 &	 Huggins,	 2018;	 Larroque	
&	 Balkenhol,	 2023; Nielson et al., 2001;	 Skaug,	 2001,	 Spitzer	
et al., 2016).	 The	 approach	 is	 attractive	 because	 it	 can	 use	 non-
invasive	 genetic	 samples	 and	 only	 requires	 individuals	 to	 be	

F I G U R E  1 An	example	pedigree	reconstructed	from	genetic	
data	that	identified	females	(circles),	males	(squares),	and	their	
familial	relationships	(black	lines).	Individuals	may	be	genetically	
sampled	(gold)	or	unsampled	(blue),	and	genetically	matched	
(solid)	or	unmatched	(patterned)	to	sampled	offspring.	Pedigree	
reconstruction	allows	the	inference	of	unsampled	individuals	by	
genotypic	data	from	offspring	and	mate	(inferred	individuals;	blue,	
solid),	and	of	unsampled	individuals	that	have	not	been	matched	to	
offspring	(invisible	individuals;	blue,	patterned).
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sampled	 once	 (in	 contrast	 with	 genetic	 CMR	 studies).	 Creel	 and	
Rosenblatt	(2013)	successfully	validated	this	approach	with	a	simu-
lated	African	lion	(Panthera leo)	population.	Spitzer	et	al.	(2016) then 
applied	 this	 pedigree	 reconstruction	 approach	 to	 two	brown	bear	
(Ursus arctos) populations and found that pedigree reconstruction 
estimates	were	comparable	to	existing	CMR	estimates.	Larroque	and	
Balkenhol	(2023)	used	simulated	wild	boar	(Sus scrofa) and red deer 
(Cervus elaphus) populations to compare pedigree reconstruction 
estimation	with	CMR	and	alternative	abundance	estimators	reliant	
on	identifying	kinship	relationships.	Larroque	and	Balkenhol	(2023) 
demonstrated the pedigree reconstruction was precise and insen-
sitive	 to	population	 fecundity,	but	cautioned	 its	accuracy	 is	highly	
dependent	 on	 knowing	 roughly	 how	 many	 individuals	 should	 be	
sampled.	With	 further	 development,	 the	 pedigree	 reconstruction	
method	could	provide	affordable	and	efficient	abundance	estimates	
for wildlife studies.

While	 pedigree	 reconstruction	 is	 an	 attractive	 alternative	 to	
other	 commonly	 used	methods,	 its	 application	 can	 be	 broadened	
by	 addressing	 known	 limitations.	 First,	 pedigree	 estimation	 has	
been	developed	 to	produce	point	estimates	of	 abundance,	but	no	
measure	 of	 precision	 has	 been	 established	 for	 this	 method,	 nor	
has	 its	ability	 to	estimate	population	growth	rates	been	evaluated	
(Spitzer	et	al.,	2016).	Second,	the	sampling	effort	required	for	ped-
igree	 estimation	 has	 been	 evaluated	 only	 in	 terms	 of	 sampling	 a	
proportion of unsampled individuals in a target population (Creel 
&	Rosenblatt,	2013).	However,	 individuals	 are	distributed	nonran-
domly	in	space,	and	at	the	time	of	sample	collection	the	identity	of	
individuals	is	unknown.	Practically	speaking,	the	study	design	must	
consider	 the	spatial	dynamics	of	a	population	such	as	home	range	
size	and	habitat	use	to	maximize	the	number	of	uniquely	sampled	in-
dividuals	under	consideration.	Finally,	the	relationship	between	the	
accuracy	of	estimates	from	pedigree	reconstruction	and	population	
density	is	unknown	yet	crucial.	Pedigree	reconstruction	may	meet	a	
need	for	a	noninvasive,	efficient,	flexible,	and	affordable	approach	
to	monitoring	populations	for	a	variety	of	species.	However,	these	
critical	 questions	must	 be	 tested	with	 spatially	 explicit,	 simulated	
populations	 along	 with	 comparisons	 with	 established	 abundance	
measures	in	well-studied	populations	to	better	 inform	applications	
of this method with wild populations.

In	this	study,	we	enhanced	the	Creel	and	Rosenblatt	(2013) ped-
igree	reconstruction	population	estimator	by	integrating	a	Bayesian,	
probabilistic	approach	to	estimate	population	size	along	with	a	mea-
sure	of	uncertainty.	We	used	a	stochastic,	spatially	explicit	simulated	
moose (Alces americanus; Figure 2) population to (1) evaluate the ac-
curacy	of	an	updated	pedigree	reconstruction	approach	to	estimate	
abundance	and	growth	rates	with	varying	sampling	efforts	and	(2)	
develop	 a	 location-based,	 noninvasive	 sampling	 design	 that	 mim-
ics	 a	 realistic	 field	 study	 and	 identify	 the	effort	 level	 required	 for	
accurate	abundance	and	growth	rate	estimates.	We	then	(3)	inves-
tigate	 the	relationship	between	the	bias	and	precision	of	pedigree	
reconstruction	 abundance	 estimates	 and	 population	 density.	 This	
study	advances	a	promising	method	for	estimating	abundance	and	
strengthens	its	capacity	for	application	to	wildlife	populations.

2  |  METHODS

2.1  |  Pedigree reconstruction population estimator

A	population	of	adult	 individuals	can	be	partitioned	 into	 four	seg-
ments,	as	defined	by	pedigree	reconstruction	(Appendix 1:	A1	and	
A2).	The	first	two	segments	include	individuals	that	are	genetically	
sampled and are either related to other sampled individuals (par-
ent–offspring relationship derived from a reconstructed pedigree; 
Nlinked),	or	unrelated	to	any	other	sampled	individual	(Nunlinked). The 
third	segment	includes	individuals	that	are	missed	by	genetic	sam-
pling	efforts	but	have	left	evidence	of	their	existence	in	the	popu-
lation	because	 they	have	 successfully	 reproduced	 (Ninferred). These 
unsampled individuals are inferred if their mate and at least one of 
their	 offspring	 have	 been	 sampled.	 The	 fourth	 segment	 includes	
individuals	 that	 are	 both	missed	by	 genetic	 sampling	 and	have	no	
evidence	of	 successful	 reproduction	 (and	 thus	cannot	be	 inferred)	
and	are	 invisible	 to	pedigree	reconstruction	 (Ninvisible).	An	estimate	
of	 the	 adult	 population	 size	 is	 the	 sum	of	 these	 four	 components	
(Equation 1),	which	can	be	estimated	by	computing	the	conditional	
probabilities	based	on	the	three	known	terms	and	is	an	improvement	
of	the	original	Creel	and	Rosenblatt	 (2013) estimator (Appendix 1: 
A1).	 This	 modification	 of	 pedigree	 reconstruction	 as	 a	 means	 of	
population	 estimation	 follows	 the	 logic	 of	 basic	 CMR	 approaches	
in	which	 a	population	estimate	 is	 obtained	by	dividing	 the	 known	
sample	by	an	estimate	of	capture	probability	(Williams	et	al.,	2002). 
Importantly,	only	adult	 individuals	capable	of	breeding	are	consid-
ered in these four conditions, whereas immature individuals help 
identify	adult	individuals	as	linked	or	inferred	individuals.	Population	
estimates	 from	pedigree	 reconstruction	should	 therefore	be	 inter-
preted	as	the	size	of	the	adult	segment	of	a	population.

Although	 the	 approach	 provides	 a	 method	 for	 estimating	
total	 population	 size,	 it	 lacks	 integration	 of	 uncertainty	 around	
parameter	estimates,	which	could	be	sizeable	in	cases	where	too	
few	 individuals	are	sampled	 (Spitzer	et	al.,	2016).	Assuming	high	
confidence	 in	 the	ability	of	genetic	 information	to	determine	re-
lationships and infer the existence of unsampled individuals, 

F I G U R E  2 An	adult	male	moose	(Alces americanus) shedding its 
winter	coat	in	Vermont,	USA.	Photograph	by	E.	Rosenblatt.
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uncertainty	in	the	estimates	from	pedigree	reconstruction	lies	in	
the	estimation	of	the	marginal	probabilities	(psampled and pmatched). 
Observed	numbers	of	individuals	used	to	calculate	these	marginal	
probabilities	are	subject	to	sampling	effort	and	study	design,	and	
therefore	represent	a	random	process	that	introduces	uncertainty.	
We	propose	that	a	beta	distribution	can	be	used	to	set	prior	prob-
abilities	 on	 the	psampled and pmatched.	 The	 observed	 data,	 derived	
from	pedigree	reconstruction,	can	then	be	used	to	update	vague	
prior	distributions	to	posterior	distributions,	which	in	turn	can	be	
used	in	bootstrapping	to	generate	the	joint	probabilities	and	pop-
ulation estimates across multiple trials (Appendix 1:	 A2).	 In	 the	
bootstrap,	 random	 values	 of	 both	 marginal	 probabilities	 can	 be	
drawn and multiplied together to calculate a random sample of 
joint	probabilities.	These	joint	probabilities	can	be	used	to	produce	
a	random	sample	of	likely	population	estimates,	from	which	confi-
dence	intervals	can	be	obtained	that	provide	measures	of	uncer-
tainty	(Appendix 1:	A2).

As	with	 any	method	 of	 estimating	 population	 size,	 there	 are	
several	assumptions	that	must	be	met	when	using	pedigree	recon-
struction.	First,	the	probability	of	being	sampled	(psampled) should 
not	 differ	 between	matched	 and	 unmatched	 individuals.	psampled 
is calculated from the proportion of linked individuals that were 
sampled (Appendix 1:	A1);	there	is	no	means	of	estimating	psampled 
for	unmatched	individuals,	as	the	number	of	“invisible”	individuals	
is	unknown.	For	the	same	reason,	the	probability	of	being	matched	
to another individual (pmatched)	should	not	differ	between	sampled	
and	unsampled	individuals.	Second,	this	approach	considers	only	
sexually	mature	adults	 in	calculating	conditional	and	joint	proba-
bilities	but	requires	genetic	samples	from	all	age	classes	to	iden-
tify	 adults	 as	 linked,	 unlinked,	 or	 inferred.	 Similarly,	 population	
size	estimates	correspond	to	the	total	adult	population	size,	which	
can	easily	be	corrected	to	include	juveniles	if	age	distributions	are	
known	for	the	population.	Third,	mortality	must	be	accounted	for	
when reconstructing the pedigree, and should not include sam-
ples	 from	deceased	 individuals	other	 than	 to	 infer	 individuals.	 If	
not accounted for, pedigree reconstruction will accumulate indi-
viduals no longer present in the population in its calculation of 
total	population	size,	resulting	in	an	overestimation	of	abundance	
(Creel	&	Rosenblatt,	2013).	Creel	and	Rosenblatt	(2013) presented 
approaches	 to	 account	 for	mortality	 in	 pedigree	 reconstruction,	
primarily	 by	 applying	 available	 mortality	 rates	 to	 sampled	 indi-
viduals	over	multiple	years	of	sampling.	Fourth,	sample	collection	
must allow the designation of individuals as a juvenile or an adult. 
Finally,	 all	 adults	must	 exist	 in	 one	 of	 the	 four	 states	 described	
above;	additional	states	can	lead	to	biased	estimation	of	both	mar-
ginal	probabilities.

2.2  |  Applying updated pedigree reconstruction to 
a simulated moose population

To evaluate the performance of pedigree reconstruction, we used 
an	 individual-based	 model	 (Grimm,	 2019) to simulate a moose 

population.	Moose	are	a	candidate	species	for	the	use	of	pedigree	re-
construction	as	they	often	inhabit	remote,	rugged	areas	with	dense	
vegetation	and	spend	much	of	the	year	in	solitude	or	small	groups	
(Ballard	et	al.,	1991; Harris et al., 2015).	We	simulated	the	popula-
tion	dynamics	of	a	stable	moose	population	over	25 years	in	a	1650-
km2 management unit in northeastern Vermont (Figure A1). Each 
year	of	our	simulation	began	at	the	beginning	of	winter	(December)	
and included the annual processes that a moose experiences in the 
wild,	including	a	winter	survival	(February–April),	synchronous	birth	
pulse	 and	 dispersal	 (May),	 and	 summer	 survival	 (May–December;	
Figure 3).	Samples	(e.g.,	scat)	for	pedigree	reconstruction	were	col-
lected	during	winter.	We	emphasize	that	our	goal	was	not	to	study	
this	 specific	 population	 in	Vermont.	 Rather,	 our	 aim	was	 to	 apply	
the	dispersal,	birth,	and	death	of	individuals	using	realistic,	empiri-
cal	rates	from	multiyear	studies	of	moose	in	the	region	to	develop	a	
known pedigree and derive population estimates for the population.

2.3  |  Individual-based model simulation

We	 used	 demographic	 data	 available	 for	 the	 moose	 populations,	
available	 from	 radio-collar	 studies	 across	 the	 region,	 adjusted	 to	
ensure	stable	population	growth	(Table 1; Ellingwood et al., 2020). 
Our	 individual-based	 model	 simulation	 was	 conducted	 in	 R,	 and	
source	code	 is	available	 in	the	Data	Availability	statement	 (R	Core	
Team, 2021).	We	incorporated	senescence	(Gasaway	et	al.,	1983) in 
our	simulated	population	by	increasing	the	odds	of	mortality	by	1.6-
fold	 every	 year	 after	9 years	of	 age	 (Ericsson	&	Wallin,	2001) and 
ceasing	reproduction	in	adult	females	after	14 years	of	age	(Ericsson	
et al., 2001).	We	used	age-specific	vital	rates	until	15 years	for	both	
sexes, after which individuals survived and reproduced at a constant 
rate (Table 1).	Birth	rates,	expressed	as	newborn	calves	per	cow	per	
year,	rapidly	increased	with	age,	reaching	a	maximum	rate	for	adults	
aging from 3 to 14 (Table 1).	Twinning	is	rarely	observed	in	Vermont	
and	other	New	England	states	 (DeBow,	2020),	 so	we	 limited	birth	
rates	to	a	single	newborn	calf	per	adult	female,	per	year.	These	vital	
rates	 corresponded	 to	 a	 stable,	 slightly	 positive	 population	 trend	
(λasymptotic = 1.003),	estimated	using	the	popbio	package	in	R	(R	Core	
Team, 2021;	 Stubben	&	Milligan,	2007).	Our	 simulated	population	
began	with	659	 individuals	with	a	stable	age	distribution	 (Table 1; 
R Core Team, 2021;	Stubben	&	Milligan,	2007).

We	 incorporated	 spatial	movement	and	home	 range	establish-
ment	based	on	data	available	 from	studies	 in	Vermont	and	neigh-
boring	New	Hampshire	(Ball,	2017;	Blouin	et	al.,	2021a).	Individuals	
in our simulated population were assigned random home range cen-
troids	within	the	study	area	using	the	spsample()	function	in	the	sp	
package	(Bivand	et	al.,	2013;	Pebesma	&	Bivand,	2005).	We	assigned	
locations	based	on	global	positioning	system	(GPS)	collar	data	col-
lected	on	moose	of	the	same	sex	and	age	in	the	study	area,	adjusted	
to	be	relative	to	each	simulated	animal's	home	range	centroid	(Blouin	
et al., 2021a, 2021b).	Animal	centroids	would	change	as	individuals	
dispersed,	and	location	data	would	be	updated	as	 individuals	aged	
into	 older	 age	 classes.	We	 integrated	 available	GPS	 collar	 data	 to	
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    |  5 of 18ROSENBLATT et al.

F I G U R E  3 A	summary	of	the	processes	
involved	with	each	time	step	(year)	of	
the simulated moose (Alces americanus) 
population. Demographic processes 
shown	(inner	cycle)	include	seasonal	
population	sizes	(boxes)	influenced	
by	age-specific	survival	rates	(s),	age-
specific	birth	rates	(b),	and	timing	of	the	
population's	birth	pulse.	Spatial	dynamics	
shown	(middle	cycle)	include	the	timing	
of	mate	selection,	yearling	dispersal,	
and home range adjustment with aging. 
Sampling	focused	on	the	population	in	
early	winter,	prior	to	winter	mortality.

TA B L E  1 Vital	rates	by	sex,	age,	and	season,	and	yearling	dispersal	distances	used	in	the	spatially	explicit	simulated	moose	(Alces 
americanus)	population.	Vital	rates	and	dispersal	distances	were	based	on	moose	multiyear	studies	in	Vermont	and	New	Hampshire,	
USA	(Ball,	2017; Ellingwood et al., 2020). Reduction in survival rates for older age classes were included to account for adult senescence 
(Gasaway	et	al.,	1983).

Sex Age
Winter 
survival Birth rate

Summer 
survival Yearling dispersal distance (SE)

Segment of starting 
population (n; N = 659)

Female 0 (Calf) 0.70 0 0.70 – 72

1 0.93 0.07 0.95 2.3 km	(0.4) 47

2 0.93 0.77 0.95 – 42

3–9 0.93 0.90 0.95 – 180

10 0.89 0.90 0.92 – 15

11 0.84 0.90 0.88 – 12

12 0.76 0.90 0.82 – 9

≥13 0.67 0.90 0.74 – 11

Male 0 (Calf) 0.70 – 0.70 – 72

1 0.88 – 0.90 9.3 km	(3.1) 45

2–9 0.88 – 0.90 – 142

10 0.82 – 0.85 – 5

11 0.74 – 0.78 – 4

12 0.64 – 0.69 – 2

≥13 0.53 – 0.58 – 1
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6 of 18  |     ROSENBLATT et al.

allow	for	realistic	variation	in	home	range	size	and	shape,	and	to	es-
tablish	both	winter	and	annual	home	ranges.	We	used	annual	home	
ranges	to	determine	mate	selection	and	the	use	of	the	study	area,	
while	we	used	winter	home	ranges	to	develop	spatially	explicit	sam-
pling for pedigree reconstruction.

In	each	year	of	the	simulation,	individuals	began	with	established	
centroids	and	home	ranges,	and	survived	the	winter	at	age-specific	
rates (Table 1)	resulting	from	a	Bernoulli	process	(the	rbinom()	func-
tion	 in	 R).	 Surviving	 females	 (>1 year	 old)	 then	 reproduced	 in	 the	
spring	(May)	with	a	random	draw	from	a	Bernoulli	distribution	based	
on	their	age-specific	reproductive	rate	(Table 1). Reproducing moth-
ers	were	randomly	assigned	a	mate	from	a	list	of	candidate	fathers	
(>3 years	old)	that	were	alive	the	previous	breeding	season	(fall)	and	
overlapped	spatially.	We	determined	overlap	using	100%	minimum	
convex	 polygons	 calculated	 using	 the	 adehabitatHR	 package	 in	 R	
(Calenge, 2006).	Offspring	were	added	to	the	population,	with	es-
tablished	relationships	to	their	parents.	Newborn	calves	had	home	
ranges	that	matched	their	mothers	until	 they	dispersed	during	the	
following	 year	 (Ballard	 et	 al.,	1991).	 At	 this	 time,	 all	 individuals	 in	
the	population	aged	1 year.	New	yearlings	would	then	disperse	at	a	
random	bearing	(0–359)	and	distance	drawn	from	a	normal	distribu-
tion	derived	from	available	estimates	of	dispersal	distances	(Table 1). 
Individuals	then	survived	the	summer	to	the	end	of	the	annual	time	
step	at	age-specific	rates	(Table 1)	using	a	Bernoulli	process.

2.4  |  Genetic sampling of simulated individuals

We	 simulated	 noninvasive	 genetic	 sampling	 from	 fecal	 collection	
of	 the	 population	 in	 early	 and	 mid-winter	 months	 (December–
February)	to	determine	individual	identity,	sex,	and	parent–offspring	
relationships.	We	assumed	demographic	closure	during	this	period,	
which	 is	 appropriate	 as	 the	 early	 winter	months	 precede	 the	 pe-
riod	of	greatest	winter	mortality	(March–April;	DeBow	et	al.,	2021). 
Importantly,	we	assumed	that	a	study	of	this	nature	could	determine	
the	basic	age	class	(calf	or	adult)	of	an	individual	at	collection	from	
track	and	fecal	pellet	size	 (Franzmann	&	Schwartz,	2007;	Koitzsch	
et al., 2022).	Again,	calves	allow	the	identification	of	matched,	sam-
pled	adults	and	matched,	unsampled	adults,	but	are	not	included	in	
the adult population estimate (Appendix 1:	A1).	We	determined	that	
if a cow with a dependent calf (<1 year	old)	was	sampled,	 the	calf	
would	be	sampled	as	well.	We	note	that	this	determination	did	not	
violate	 the	assumption	 that	 the	probability	of	being	sampled	does	
not	differ	between	matched	and	unmatched	 individuals.	The	pres-
ence	 (or	 absence)	of	 calf	 sign	 should	not	 influence	 the	probability	
of	its	mother	being	sampled,	as	cow–calf	pairs	travel	often	in	each	
other's	tracks	or	in	close	proximity	during	the	snowy,	winter	months	
considered	in	this	study.

After	 a	 20-year	 simulation	 period	 that	 established	 parent–off-
spring relationships, we simulated genetic sampling for moose over 
5 years	 to	 test	 the	 accuracy	 of	 the	 updated	 pedigree	 reconstruc-
tion	estimator.	In	each	year,	previously	unsampled	individuals	were	
added	 to	 the	 pedigree,	 broadening	 and	 lengthening	 the	 pedigree	

with	 each	 passing	 generation.	We	 did	 not	 incorporate	 duplicated	
samples	from	the	same	individual.	We	did	not	incorporate	uncertain-
ties in pedigree reconstruction, and assumed that parent–offspring 
assignments were accurate.

2.5  |  Objective 1: Accuracy of updated pedigree 
reconstruction

In	every	year	of	sampling,	we	randomly	sampled	animals	that	existed	
in	the	study	area	at	a	range	of	sampling	intensities	over	100	iterations:	
10%–90%	of	unsampled	individuals,	in	10%	increments,	resulting	in	
900	sampling	iterations	each	year;	referred	hereafter	as	population-
based	sampling	 (Table 2).	We	calculated	 the	number	of	 live	adults	
that were linked (sampled and matched to an offspring), unlinked 
(sampled and unmatched to an offspring), and inferred (unsampled, 
but	matched	to	an	offspring)	for	each	iteration	(Appendix 1:	A1).	We	
then estimated psampled and pmatched, and estimated adult population 
size	based	on	Equation 4 in Appendix 1:	A1.	We	evaluated	the	preci-
sion,	bias,	and	accuracy	of	these	estimates	using	coefficient	of	vari-
ation	(CV),	scaled	mean	error	(SME),	and	scaled	root	mean	squared	
error	(SRMSE),	respectively,	relative	to	the	known	adult	population	
size	inside	of	the	1650 km2	study	area.	We	also	used	these	popula-
tion estimates to estimate annual population growth rate and com-
pared these growth rate estimates to the true annual population 
growth	rate.	We	also	tested	the	ability	of	bootstrapping	to	estimate	
uncertainty	around	each	population	estimate.	For	each	sampling	it-
eration,	we	 calculated	 the	95%	confidence	 intervals	 using	 the	 ap-
proach	described	in	Appendix 1:	A2	and	reported	the	proportion	of	
these	iterations	that	contained	the	known	population	size.

2.6  |  Objective 2: Spatial sampling effort for 
accurate population estimates

We	quantified	the	spatial	extent	required	to	reach	accurate	popu-
lation	 estimates	 using	 pedigree	 reconstruction	 (hereafter	 spatially	
based	sampling),	as	a	more	easily	quantified	metric	of	effort	com-
pared	to	population-based	sampling.	We	“surveyed”	a	varying	num-
ber	 of	 1 km2 grid cells within a sampling grid overlaid across the 
study	area	and	collected	samples	from	individuals	that	used	those	
grid cells (Figure A2).	We	explored	a	range	of	realistic	sampling	ef-
forts,	where	new	cells	were	sampled	each	year.	We	randomly	sam-
pled	10–200	grid	 cells	 annually,	 representing	0.06%–12.2%	of	 the	
study	area,	with	100	sampling	 iterations	for	each	 level	of	spatially	
based	 sampling	 in	each	year.	The	 resulting	10,000	 sampling	 itera-
tions	represented	an	annual	survey	effort	of	10–200 km2 (Table 2). 
We	randomly	selected	grid	cells	for	sampling,	weighted	by	the	num-
ber	of	moose	using	each	grid	 cell	 to	mimic	prior	 knowledge	avail-
able	 to	wildlife	 practitioners	 (i.e.,	 habitat	 suitability	 or	 occurrence	
data).	 To	 calculate	 these	weights,	we	generated	 a	100%	minimum	
convex	polygon	for	each	individual	using	the	adehabitatHR	package	
(Calenge, 2006), and used the over() function from the sp package 
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    |  7 of 18ROSENBLATT et al.

(Bivand	 et	 al.,	 2013;	 Pebesma	 &	 Bivand,	 2005) to calculate the 
number	of	individuals	overlapping	each	grid	cell	(Figure	A2). These 
abundances	were	scaled	from	0	to	1	based	on	the	grid	cell	with	the	
highest	abundance	value.

When	a	 grid	 cell	was	 selected	 for	 sampling,	we	 calculated	 the	
utilization	probability	for	each	moose	using	that	pixel	as	a	proxy	for	
encountering scat, using their winter locations and the kde2d() func-
tion	from	the	MASS	package	(Venables	&	Ripley,	2002).	We	scaled	
these	utilization	probabilities	between	0	and	1	for	each	animal	based	
on	their	highest	utilization	probability	estimated	across	all	grid	cells	
and	used	 these	 scaled	probabilities	 as	 the	 probability	 of	 sampling	
each	animal	that	used	a	sampled	grid	cell.	In	doing	so,	we	assumed	
that if an individual was using a grid cell, detection was a process 
based	on	utilization,	rather	than	the	ability	of	a	survey	team	to	find	
a scat. Due to imperfect detection and stratified cell selection, total 
sample	sizes	were	lower	in	the	spatial	sampling	approach	(Objective	
2)	compared	to	the	population-based	sampling	(Objective	1).	As	with	
Objective	1,	each	year	of	sampling	both	broadened	and	lengthened	
the	 estimated	 pedigree.	We	 calculated	 precision	 (CV),	 bias	 (SME),	
accuracy	 (SRMSE),	growth	rate,	and	confidence	 intervals	 to	evalu-
ate the performance of the pedigree reconstruction estimator using 
spatial sampling.

2.7  |  Objective 3: Performance of estimator across 
varying local animal densities

We	delineated	nine,	equally	sized	zones	(298 km2) that spanned the 
area of the simulated population to test how local densities influ-
ence	 what	 sampling	 intensity	 is	 required.	 We	 used	 location	 data	
from	the	final	year	of	the	25-year	population	simulation	to	calculate	
the	density	within	each	zone.	We	then	sampled	1%–20%	of	1 km2 
grid	 cells	 delineated	 for	Objective	2	 in	 each	 zone	 (3–60 km2) with 
the	same	stratified,	random	sampling	design.	We	then	used	pedigree	
reconstruction	to	estimate	population	density	(with	95%	confidence	
intervals)	 for	each	zone	across	sampling	efforts.	We	examined	the	
role	of	population	density	in	the	required	sampling	effort	for	pedi-
gree	reconstruction	to	produce	accurate	abundance	estimates	and	
to	detect	changes	in	population	size.

3  |  RESULTS

Our	 simulated	 moose	 population	 exhibited	 a	 variable	 trajectory,	
with	our	initial	population	of	659	moose	growing	very	slowly	to	872	
moose	 by	 the	 end	 of	 the	 25-year	 simulation	 (λ = 1.011).	 Of	 these	

TA B L E  2 Average	number	moose	sampled	in	each	year	of	sampling	a	simulated	moose	(Alces americanus)	population.	Moose	of	all	ages	
were	available	for	sampling,	but	pedigree	reconstruction	estimates	the	number	of	adults	in	this	simulated	population.	Sampling	efforts	for	
spatially	based	sampling	are	thinned	for	brevity.

Year 1 2 3 4 5

Population	size 767 771 773 796 828

Adults 597 605 588 604 638

Sampling	effort Mean	number	of	new	individuals	sampled	(range)

Population-based	
sampling

10% 105 (76–131) 92 (69–122) 86 (55–117) 83 (58–109) 79 (59–102)

20% 201 (162–236) 159 (116–202) 133 (106–169) 125 (103–155) 111 (84–139)

30% 293 (259–335) 202 (152–246) 161 (130–194) 137 (105–169) 131 (98–158)

40% 380 (346–411) 225 (190–259) 167 (134–194) 147 (116–169) 142 (115–169)

50% 459 (432–495) 237 (206–271) 169 (141–192) 155 (131–176) 151 (126–173)

60% 536 (501–571) 233 (195–261) 171 (150–192) 162 (135–194) 160 (136–182)

70% 604 (583–633) 221 (189–246) 170 (146–188) 171 (148–195) 169 (147–187)

80% 664 (635–688) 208 (185–242) 173 (154–195) 179 (158–194) 179 (161–200)

90% 717 (700–735) 188 (170–207) 179 (169–194) 186 (174–201) 186 (175–199)

Spatially	based	
sampling

10 km2 66 (46–87) 59 (39–85) 53 (30–78) 51 (31–73) 54 (34–73)

30 km2 169 (146–204) 124 (102–151) 109 (89–138) 103 (75–133) 101 (71–125)

50 km2 244 (210–273) 160 (133–206) 132 (100–158) 124 (98–149) 120 (92–143)

70 km2 302 (261–349) 177 (145–202) 144 (109–169) 138 (110–178) 130 (103–160)

91 km2 346 (313–377) 188 (159–222) 153 (129–182) 145 (123–163) 137 (111–154)

111 km2 386 (353–417) 193 (149–222) 157 (122–179) 150 (128–175) 142 (117–169)

131 km2 415 (383–443) 196 (159–224) 160 (140–191) 154 (130–168) 145 (122–175)

151 km2 442 (403–475) 196 (170–233) 164 (135–187) 157 (142–171) 147 (126–168)

171 km2 465 (433–496) 195 (173–229) 163 (136–185) 160 (142–180) 154 (131–172)

191 km2 483 (442–512) 197 (166–231) 164 (140–183) 163 (140–188) 156 (136–173)

201 km2 489 (459–512) 198 (166–229) 165 (147–189) 164 (147–182) 156 (137–173)
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8 of 18  |     ROSENBLATT et al.

individuals	in	the	final	year	of	the	simulation,	828	moose	used	some	
portion	of	the	study	area	(Table 2). The adult segment of the popula-
tion	 (≥2 years	old)	 followed	a	 similar	 trajectory,	with	 an	 initial	 517	
adult moose increasing to 675 adult moose, 638 of which overlapped 
with	the	study	area	(Table 2; Figure 4a,b).

3.1  |  Objective 1: Accuracy of updated pedigree 
reconstruction

By	sampling	new	individuals	over	multiple	years,	pedigree	recon-
struction provided accurate estimates of the adult moose popu-
lation	 and	 its	 rate	 of	 change.	 With	 adequate	 population-based	
sampling,	pedigree	 reconstruction	estimates	were	within	10%	of	
the	true	number	of	adults	in	the	population	(Figures 4c and 5).	As	
sampling	 effort	 increased	 within	 each	 year,	 estimates	 were	 as-
ymptotic,	 indicating	a	 threshold	at	which	 further	sampling	effort	
yielded	little	benefit	(Figure 4c).	Precision	was	high	for	all	sampling	
intensities,	as	measured	by	CV,	and	increased	for	all	sampling	 in-
tensities	 as	 surveys	 continued	 through	 time,	 reaching	 under	 5%	
for all sampling intensities (Figure 5).	 Sampling	 effort	 necessary	
for	minimizing	bias	 (SME)	and	maximizing	accuracy	 in	population	
estimates	decreased	as	the	survey	period	progressed	(Figure 5).	In	
the	first	year	of	sampling,	estimates	with	 low	bias	 (>	−5%	scaled	
mean	error;	SME)	and	high	accuracy	 (SRMSE)	were	only	possible	
by	sampling	the	majority	of	unsampled	individuals	(90%;	Figure 5). 
This	low	bias	threshold	was	met	with	60%	sampling	by	Year	2,	and	
50%	 sampling	 by	 Year	 3	 (Figure 5);	 Bias	with	 sampling	 ≤40%	 of	
unsampled	individuals	stabilized	below	the	−5%	SME	threshold,	in-
dicating	that	sampling	at	these	lower	levels	would	not	reduce	bias	
with additional sampling (Figure 5), even with a changing popula-
tion	size.	Alternatively,	with	 intensive	population-based	sampling	
over	 the	 5-year	 survey,	 estimates	were	 slightly	 biased	 (SME > 0)	
to	overestimate	abundance	by	an	average	of	3.5%,	due	to	the	in-
clusion	 of	 previously	 sampled	 adults	 that	 exited	 the	 study	 area	
through emigration or death (Figure 5).

Population	growth	 rates	derived	 from	pedigree	 reconstruction	
(Nt+1/Nt)	were	greatly	overestimated	in	the	first	2 years	of	sampling,	
particularly	when	sampling	effort	was	low	(Figure 4d).	As	sampling	
progressed	throughout	the	simulated	study,	broadening	and	length-
ening	 the	estimated	pedigree,	 estimated	growth	 rates	became	as-
ymptotic	around	the	true	population	growth	rate	for	each	interval,	
and	the	sampling	effort	necessary	to	accurately	estimate	population	

growth	rate	decreased.	Growth	rate	estimates	could	distinguish	be-
tween	slight	population	growth	(Year	3–4	and	Year	4–5)	and	decline	
(higher	 sampling	efforts,	Year	2–3,	Figure 4d),	 even	 in	 this	mostly	
stable	population.

Our	 proposed	 method	 to	 estimate	 uncertainty	 around	 popu-
lation	 estimates	 contained	 the	 true	 population	 size	 with	 enough	
sampling	intensity	over	multiple	surveys.	When	50%	of	unsampled	
individuals	were	sampled	in	three	or	more	years,	95%	confidence	in-
tervals	overlapped	the	true	populations	size	as	predicted	(Figure 4e). 
Confidence intervals for lower sampling intensities did not include 
the	known	population	size	as	predicted	(Figure 4e).

3.2  |  Objective 2: Spatial sampling effort for 
accurate population estimates

Our	simulated	sample	collection	across	our	study	area	yielded	pat-
terns consistent with our population sampling scheme reported 
in	 Objective	 1	 while	 providing	 a	 more	 intuitive	 metric	 of	 effort	
(Figure 6a).	 However,	 precision,	 bias,	 and	 accuracy	 were	 lower	
relative	to	those	attained	by	population-based	sampling	(Objective	
1; Figure 5).	While	we	stratified	sampling	based	on	the	numbers	of	
moose using each grid cell, even extensive sampling efforts did not 
capture	more	than	63%	of	unsampled	individuals	(Figure 6b,	Year	
1),	 in	part	because	the	probability	of	sample	detection	was	not	1	
in this simulation. Therefore, our inference that spatial sampling is 
consistent	with	population-based	sampling	is	limited	to	the	propor-
tion	of	previously	unsampled	 individuals	sampled	realized	by	our	
spatial sampling (Figure 6b).	Given	the	assumptions	and	conditions	
of	our	simulated	moose	population	and	survey	methods,	collecting	
samples	from	moose	over	100 km2	for	5 years	would	produce	mini-
mally	 biased	 estimates	 (SME ≥ −5%)	 of	 the	 total	 adult	 population	
(Figures 6a and 5).	As	with	population-based	sampling,	both	preci-
sion	and	accuracy	increased	for	all	sampling	intensities	as	surveys	
continued	through	time.	Population	growth	rate	estimates	can	be	
unbiased	over	 time,	with	 accurate	 estimates	of	 slight	 population	
increases	 from	 substantial	 sampling	 effort	 (150 km2; Figure 6c). 
Our	measures	 of	 uncertainty	 did	 not	 perform	well	 in	 our	 spatial	
sampling	simulation,	with	95%	confidence	intervals	not	containing	
the	true	population	size	for	95%	of	simulations	(Figure 6d). This un-
derperformance	is	most	likely	the	result	of	the	limited	proportion	
of	the	population	sampled	achieved	with	spatially	based	sampling	
(Figure 6b).

F I G U R E  4 Performance	of	pedigree	reconstruction	to	estimate	the	adult	moose	(Alces americanus)	population	size	and	trend	across	a	
range	of	population-based	sampling	intensities.	Sampling	intensity	refers	to	the	proportion	of	unsampled	individuals	sampled	each	year.	
(a)	The	number	of	adults	in	the	study	area	across	the	5 years	of	sampling,	after	a	20-year	burn-in	period.	(b)	A	subset	of	animal	locations	
illustrating	the	distribution	of	animals	across	the	study	area.	(c)	The	bias	in	pedigree	reconstruction	estimates	(points)	and	the	average	bias	
across	these	simulations	(blue	lines).	Solid	black	lines	indicate	no	bias	in	a	population	estimate,	and	black	dashed	lines	indicate	10%	bias.	(d)	
Point	and	average	estimates	of	population	growth	rate	(lambda;	points	and	blue	lines,	respectively),	compared	to	the	population's	growth	
rate	(black	solid	line).	(e)	Proportion	of	population	sampling	iterations	for	which	the	95%	confidence	intervals	overlapped	the	true	adult	
population	size.	Our	uncertainty	measure	is	correct	when	these	proportions	meet	or	exceed	their	expected	frequency.
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10 of 18  |     ROSENBLATT et al.

3.3  |  Objective 3: Performance of estimator across 
varying local animal densities

In	the	final	winter	of	the	25-year	simulation,	moose	densities	var-
ied from 0.151 to 0.822 moose per km2	across	the	nine	298 km2 
zones	 delineated	 for	 this	 objective	 (Figure 7a). For perspective, 

the	simulated	density	for	the	entire	study	area	was	0.528	moose	
per km2.	There	was	a	clear,	positive	relationship	between	density	
and	 the	 level	of	 sampling	effort	 required	 for	unbiased	estimates	
of	 population	 size	 as	 estimated	 by	 1-year	 pedigree	 reconstruc-
tion	as	density	increases	(Figure 7b,c).	Importantly,	the	total	area	
to	 be	 sampled	 with	 low	 bias	 depended	 on	 the	 zone's	 density:	

F I G U R E  5 A	comparison	of	precision,	bias,	and	accuracy	for	pedigree	reconstruction	abundance	estimates	between	various	sampling	
intensities	of	the	population	(population-based	sampling)	or	of	the	study	area	(spatially	based	sampling).	We	quantified	precision	as	the	
coefficient	of	variation,	bias	as	the	scaled	mean	error,	and	accuracy	as	the	scaled	root	mean	squared	error.	For	reference,	scaled	mean	error	
of	−5%	and	−10%	are	indicated	with	a	dotted	and	dashed	line	for	each	sampling	scheme,	respectively.

F I G U R E  6 Performance	of	pedigree	reconstruction	over	a	range	of	spatial	sampling	intensities.	Area	sampled	refers	to	the	area	surveyed	
in	the	study	area	considered.	(a)	The	bias	in	pedigree	reconstruction	estimates	using	spatially	based	sampling	(points)	and	the	average	bias	
across	these	simulations	(blue	lines).	Solid	black	lines	indicate	no	bias	in	a	population	estimate,	and	black	dashed	lines	indicate	10%	bias.	
(b)	The	equivalent	population	sampling	intensities	for	spatial	sampling	efforts	simulated,	with	comparison	with	mean	bias	from	Objective	
1	(green	dashed	line).	(c)	Estimates	of	population	growth	rate	(lambda)	across	varying	spatial	sampling	efforts.	(d)	Proportion	of	spatial	
sampling	iterations	that	successfully	captured	the	true	population	size	within	95%	confidence	intervals.
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12 of 18  |     ROSENBLATT et al.

oversampling	low-density	zones	produced	positively	biased	popu-
lation	 estimates,	 while	 undersampling	 high-density	 zones	 pro-
duced	 negatively	 biased	 population	 estimates.	 However,	 the	
bootstrapped	confidence	intervals	were	sufficiently	large	enough	
to capture the true population estimate such that as sampling ef-
fort	increased,	100%	of	the	bootstrapped	intervals	contained	the	
true	population	size	(Figure 7d).	The	spatial	sampling	required	for	
95%	 confidence	 intervals	 to	 overlap	 true	 abundance	with	 ≥95%	
frequency	increased	with	local	density,	yet	95%	confidence	inter-
vals	for	the	highest	local	densities	did	not	overlap	true	local	abun-
dance	with	≥95%	frequency	(Figure 7d).

4  |  DISCUSSION

We	 improved	 pedigree	 reconstruction	 as	 an	 abundance	 estimator	
by	 integrating	a	probabilistic	 approach	 that	produces	accurate	es-
timates	 of	 abundance	 and	 annual	 growth	 and	 provides	metrics	 of	
uncertainty	 around	 these	estimates.	We	demonstrated	 the	use	of	
stratified, random sampling across a discrete area as an approach 
without	 requiring	 some	 prior	 knowledge	 of	 the	 population's	 size	
(Larroque	 &	 Balkenhol,	 2023).	 Accurate	 estimates	 of	 population	
size	 and	 annual	 growth	 were	 attainable	 for	 an	 entire	 population	
only	with	sufficient	sampling	over	multiple	years,	yet	this	required	

F I G U R E  7 Performance	of	pedigree	reconstruction	across	zones	with	varying	local	densities	of	a	simulated	moose	(Alces americanus) 
population.	(a)	Sample	collection	was	simulated	across	3–60 km2	of	nine	298 km2 localities, allowing for pedigree reconstruction and 
abundance	estimation	in	each	locality.	(b)	Bias	of	simulated	point	estimates	across	spatial	sampling	intensity	and	across	local	density.	(c)	
Average	bias	of	simulated	point	estimates.	(d)	Proportion	of	spatial	sampling	iterations	for	each	locality	that	overlapped	the	true	population	
size	within	95%	confidence	intervals.
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    |  13 of 18ROSENBLATT et al.

effort decreased when considering smaller localities and low popu-
lation	densities.	This	study	provides	a	key	step	in	further	develop-
ing	pedigree	reconstruction	as	a	reliable	population	estimator	to	be	
added	to	existing	approaches	for	estimating	abundance	(Larroque	&	
Balkenhol,	2023).

Our	results	indicate	that	pedigree	reconstruction	may	be	an	ap-
propriate	estimation	tool	for	low-density,	small	populations,	partic-
ularly	for	rare	and	endangered	species.	These	conditions	may	prove	
difficult	 for	 other	 genetic	 abundance	 measures	 such	 as	 genetic	
mark–recapture	methods,	which	rely	on	multiple	samples	from	each	
individual	(Puechmaille	&	Petit,	2007),	and	close-kin	mark–recapture	
methods,	which	rely	on	sampling	harvested	individuals	(Bravington	
et al., 2016;	Marcy-Quay	et	al.,	2020).	Our	selection	of	moose	as	a	
test	species,	along	with	testing	the	role	of	local	density	on	accuracy,	
demonstrates	 this.	 When	 we	 considered	 the	 population	 (n = 828	
moose,	638	adults	in	the	final	year	of	the	simulation),	pedigree	re-
construction	 produced	 accurate	 estimates	 after	 multiple	 years	 of	
intensive	sampling.	However,	when	the	population	was	broken	into	
nine	 localities	 varying	 in	 moose	 density,	 pedigree	 reconstruction	
could	 estimate	population	 size	within	 the	 lower	density	 segments	
with	much	 less	effort	 (though	with	a	cost	 in	precision)	 in	only	one	
survey.	This	is	likely	due	to	a	smaller	pedigree	to	reconstruct,	requir-
ing	fewer	individuals	be	sampled	than	in	a	larger	population	of	simi-
lar	density.	We	present	our	findings	with	caveats	that	our	inferences	
are	based	on	this	simulated	moose	population,	and	that	inferences	
may	differ	 for	other	 species	with	other	 life	history	 characteristics	
and reproductive strategies.

Pedigree	 reconstruction	 estimates	 abundance	 beyond	 the	 dis-
crete area, jurisdiction, or protected area where sampling occurs, 
leading	to	positive	bias	in	abundance	estimates	for	discrete	areas	of	
interest.	This	bias	is	likely	the	result	of	inferred	and	linked	individuals	
that	either	leave	the	population	through	emigration	or	mortality,	es-
pecially	if	the	pedigree	is	reconstructed	with	samples	that	are	com-
bined	over	 years.	However,	 this	 positive	bias	 appears	 to	be	 small,	
predictable,	and	easily	corrected	for.	Species	life	history,	dispersal,	
and	reproductive	behavior	may	be	contributing	factors	in	the	bias	of	
pedigree reconstruction estimates.

A	key	assumption	behind	pedigree	 reconstruction	 is	 that	 the	
probability	 of	 being	 sampled	 and	 the	 probability	 being	matched	
to an offspring are independent of each other. This method re-
lies	 on	 observed	 conditional	 probabilities	 p(sampled|matched) 
and p(matched|sampled)	 to	 estimate	 the	 marginal	 probabilities	
psampled and pmatched,	 respectively	 (Appendix 1:	A2).	Matched	and	
unmatched	 individuals	may	 have	 different	 probabilities	 of	 being	
sampled	 if	 a	 species'	 life	 history	 leads	 to	 matched	 adults	 being	
easier	 to	 sample	 than	 unmatched	 individuals	 (or	 vice	 versa).	 In	
our	simulated	study,	 if	an	adult	female	or	a	calf	were	included	in	
the	 sample,	 both	 individuals	were	 sampled.	 However,	 the	 simu-
lated	 means	 of	 sample	 collection,	 where	 a	 surveyor	 intersects	
tracks	and	samples	from	an	individual	in	snow,	likely	reduces	any	
increased	 probability	 of	 sampling	matched	 adults	 over	 sampling	
unmatched	 adults.	 Study	 designs	must	 consider	 seasonal	 or	 life	
stage	behaviors	that	could	make	sampling	unmatched	individuals	

more	 difficult	 than	 sampling	 matched	 individuals.	 Sampled	 and	
unsampled	 individuals	may	have	different	pmatched	 if	 there	 is	 any	
bias	 in	 sampling	 their	 offspring.	 Study	designs	must	 ensure	 that	
sampling	 is	 distributed	 to	 ensure	 the	 sampling	 of	 offspring	 that	
can	 be	matched	 to	 both	 sampled	 adults	 (linked)	 and	 unsampled	
adults (inferred; Appendix 1:	A1).	Knowledge	of	a	species'	disper-
sal	behavior	could	improve	study	design	by	minimizing	the	risk	of	
sampling	offspring	only	from	sampled	adults.

Our	simulated,	spatially	explicit	moose	population	allowed	us	to	
develop	 an	 alternate	metric	of	 sampling	effort,	 one	based	on	 sur-
veyed	area	rather	than	sampled	individuals.	This	easily	quantifiable	
approach	maximizes	the	number	of	new	individuals	sampled	in	each	
survey	while	minimizing	 the	 costs	of	unknowingly	 resampling	 ani-
mals.	 Practitioners	 often	 seek	 a	 balance	 between	maximizing	 the	
number	of	animals	 sampled	and	 the	spatial	extent	of	 sampling	 for	
an	array	of	survey	methods	(Boulanger	et	al.,	2004;	Sun	et	al.,	2014). 
This	 trade-off	 is	 also	 important	 for	 pedigree	 reconstruction,	 and	
while	local	densities	are	usually	not	known,	proxies	based	on	expert	
and	local	knowledge	or	general	understanding	of	habitat	suitability	
could	inform	this	survey	approach	(Kuhnert	et	al.,	2010;	Pearman-
Gillman	et	al.,	2020).

Pedigree	 reconstruction	 can	 be	 a	 cost-effective	 estimator	
if	 the	probability	of	detecting	an	 individual	 is	maximized.	 In	 this	
context, the detection process refers to encountering genetic ma-
terial	on	the	landscape.	In	this	simulated	study,	high	levels	of	spa-
tially	based	sampling	(200 km2)	after	3 years	yielded	an	equivalent	
population-based	sampling	rate	of	under	50%	sampling	intensity.	
While	this	sampling	rate	produced	accurate	estimates	of	popula-
tion	size,	 this	effort	 is	 likely	greater	 than	what	practitioners	can	
adopt.	This	shortcoming	may	have	resulted	from	our	use	of	utiliza-
tion	distribution	values	as	a	proxy	for	the	probability	of	collected	
samples	in	a	surveyed	grid	cell.	Our	coarse	survey	unit	(1 km2) did 
not	capture	variation	 in	finer	scale	utilization	 (Boyce,	2006), and 
we	 likely	 underestimated	 the	 probability	 of	 an	 animal	 using	 this	
spatial	unit.	We	also	did	not	consider	aggregations	of	moose,	oc-
curring	 in	 areas	 with	 favorable	 microclimate	 conditions,	 forage	
availability,	and	vegetative	cover	(Peek	et	al.,	1974).	By	increasing	
detection	of	individuals	by	designing	finer	scale	surveys	and	bene-
fiting	from	social	groups	or	clumped	resource	availability,	pedigree	
reconstruction	may	 produce	 accurate	 estimates	 at	 lower	 survey	
efforts.

A	 key	 consideration	 for	 the	 use	 of	 pedigree	 reconstruction	 is	
the	 cost	 of	 collecting	 and	 genotyping	 genetic	 samples.	 Pedigree	
reconstruction	does	not	rely	on	multiple	samples	from	individuals,	
unlike	 the	 sampling	 intensity	 required	 for	 genetic	mark–recapture	
(Puechmaille	 &	 Petit,	 2007).	 We	 found	 that	 sampling	 60%,	 50%,	
and	40%	of	previously	unsampled	individuals	over	2,	3,	and	4 years,	
respectively,	yielded	accurate	estimates.	On	average,	these	efforts	
sampled	769,	772,	 and	793	animals,	 respectively.	Using	 the	geno-
typing	 costs	of	22	USD	per	 sample	 for	 concurrent	moose	genetic	
studies	 (Rosenblatt,	 Pers.	 Comms),	 this	 sampling	 effort	 cost	 be-
tween	16,918	and	17,446	USD.	Regardless	of	how	sampling	efforts	
are	spread	across	years,	inadequate	sampling	effort	may	yield	biased	
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14 of 18  |     ROSENBLATT et al.

and	imprecise	estimates.	Practitioners	may	save	funds	by	investing	
in	shorter	survey	periods	to	minimize	personnel	and	logistical	costs,	
as	 longer	 surveys	 may	 require	 greater	 investment	 through	 time.	
Further	savings	could	be	made	if	sampling	focused	on	smaller	areas,	
where	local	densities	are	of	concern.	Importantly,	applications	could	
minimize	 the	 risk	 of	 resampling	 of	 previously	 sampled	 individuals	
to	minimize	overall	costs.	Resampling	could	be	reduced	 if	spatially	
based	sampling	was	not	only	stratified	by	relative	abundance	or	uti-
lization,	but	also	spaced	to	ensure	sampling	was	not	clustered	within	
the	home	ranges	of	a	limited	subset	of	the	population.	If	resampling	
remains	a	challenge	and	there	are	suitable	recaptures	of	individuals	
to	 also	 estimate	 abundance	with	 genetic	 CMR	 approaches,	multi-
ple	estimates	from	both	pedigree	reconstruction	and	genetic	CMR	
methods would prove useful.

Two issues remain with the application of pedigree recon-
struction	 beyond	 a	 simulated	 application	 provided	 here,	 including	
genotyping	 error	 and	detection	of	 related	 individuals	 beyond	par-
ent–offspring	relationships	over	multiple	surveys.	We	assumed	clear,	
parent–offspring	 linkages	between	related	individuals	 in	this	simu-
lation	study	but	acknowledge	that	both	issues	can	add	uncertainty	
into	abundance	estimates.	Recent	works	that	utilize	SNP	arrays	for	
wildlife species of concern have demonstrated approaches that re-
duce	genotyping	errors	and	reduce	false	detections	of	parent–off-
spring	 relationships	 (Ekblom	 et	 al.,	 2021). Future applications of 
pedigree	reconstruction	to	estimate	abundance	could	benefit	from	
rapidly	 advancing	 genotyping	 and	 documenting	 efforts	 to	 reduce	
genotyping	and	relationship	assignment	errors.

4.1  |  Future applications

Designing	a	sampling	strategy	for	pedigree	reconstruction	depends	
on	the	life	history	and	behavior	of	a	target	species.	Practitioners	may	
benefit	 from	 documenting	 demographic	 and	 spatial	 information,	
along	with	individual	identity	prior	to	sampling	to	establish	relation-
ships	and	avoid	future	resampling	(Creel	&	Rosenblatt,	2013;	Spitzer	
et al., 2016).	 Practitioners	might	maximize	 the	 number	 of	 animals	
sampled when designing sample collection, focusing on sampling 
when	a	species	aggregates,	across	a	broad	spatial	extent.	spatially	
based	sampling	approaches	could	help	meet	this	challenge,	and	re-
duce	costs	from	unnecessary	resampling	of	individuals.

Several	 examples	of	 potential	 applications	of	 pedigree	estima-
tion	 illustrate	 its	 future	use.	The	African	 lion	 is	 individually	 identi-
fiable	 (Pennycuick	&	Rudnai,	1970),	 highly	 social,	 and	 concentrate	
around	 the	 areas	 of	 high	 prey	 density	 in	 groups	 (Schaller,	 1972). 
Lion	prides	and	coalitions	remain	in	a	single	place	for	hours	or	days	
after a successful hunt, allowing for fecal sample collection of mul-
tiple	individuals	around	the	kill	site	(Tambling	et	al.,	2012;	Tambling	
&	Belton,	2009).	 Additionally,	 sampling	 dispersing	 individuals	 aids	
in	 the	 inference	 of	 parents	 in	 populations	 inhabiting	 inaccessible	
areas,	as	noted	by	Shimozuru	et	al.'s	 (2022)	study	of	brown	bears.	
Alternatively,	low-density	populations	with	restricted	ranges	would	

be	suitable	for	pedigree	reconstruction.	Low-density	moose	popu-
lations	exist	along	the	southern	edge	of	the	species	distribution	in	
eastern	North	America.	Suitable	habitat	for	these	moose	population	
are	often	known	(e.g.,	Blouin	et	al.,	2021a, 2021b) and could inform 
spatially	based	sampling	for	pedigree	reconstruction	and	aid	in	the	
monitoring	of	low-density	populations.

More	applications	of	pedigree	reconstruction	with	wild	popula-
tions	would	further	advance	this	novel	approach.	With	the	develop-
ments	of	the	pedigree	reconstruction	approach	in	this	study,	studies	
may	be	able	 to	 report	 a	measure	of	precision	 for	 their	population	
estimates	 and	 use	 successive	 sampling	 across	 time	 to	 accurately	
estimate	the	conditional	probabilities	core	to	pedigree	reconstruc-
tion.	Additionally,	the	practical	reconstruction	of	a	pedigree	comes	
with	 some	uncertainty	around	 the	most	probable	pedigree,	which	
could	be	integrated	into	the	uncertainty	around	the	probabilities	un-
derpinning	 pedigree	 reconstruction	 and	 resulting	 estimates.	Well-
studied	 populations	 of	 easily	 sampled,	 social	 species	 could	 easily	
demonstrate	and	advance	the	application	of	this	method	to	be	used	
with	poorly	studied	populations	of	conservation	concern.
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APPENDIX 1
A1:	The	premise	behind	pedigree	reconstruction	as	an	estimator	of	pop-
ulation	size.	Individuals	in	a	population	belong	to	one	of	four	mutually	
exclusive and exhaustive states, which sum to the total adult population 
size.	Two	characteristics	dictate	which	of	 these	population	segments	
an	individual	belongs	to,	including	whether	the	individual	is	genetically	
sampled	during	a	survey	(with	two	outcomes:	sampled	or	unsampled),	
and whether that individual is matched to an offspring within the pedi-
gree	(with	two	outcomes:	matched	or	unmatched).	Four	combinations	
of these two characteristics result in the following matrix:

Sampled (S) Not sampled (~S) Marginals

Matched	(M) S,M = matched	to	
offspring and 
sampled = Nlinked

~S,M = matched	to	
offspring	but	not	
sampled = Ninferred

Nmatched

Not matched 
(~M)

~S,M = sampled	but	
not matched to 
offspring = Nunlinked

~S,~M = not	sampled	
and not matched to 
offspring = Ninvisible

Nunmatched

Marginals Nsampled Nunsampled Ntotal

where: Nlinked = sampled	individuals	identified	as	a	parent	to	another	
sampled individual(s). Nunlinked = sampled	individuals	unrelated	to	other	
sampled individuals. Ninferred = unsampled	individuals	inferred	to	exist	
with sampling of offspring and mate. Ninvisible = unsampled	individuals	
invisible	to	pedigree	reconstruction.

An	 estimate	 of	 the	 total	 population	 is	 the	 sum	 of	 the	 four	
conditions:

The	 fourth	 term	 is	 unobserved.	 However,	 the	 total	 number	 of	
sampled individuals is Nlinked + Nunlinked,	and	the	total	number	of	con-
firmed individual parents is Nlinked + Ninferred.	The	number	of	adults	in	
any	of	the	four	states	in	the	above	table	can	be	corrected	by	the	joint	
probability	of	being	in	a	given	state,	calculated	as	the	product	of	two	
conditional	probabilities	 from	 the	pedigree	data.	For	example,	 the	
two	conditional	probabilities	of	being	a	linked	adult	are	as	follows:

Under	the	key	assumption	that	the	probability	of	being	sampled	is	
independent	from	the	probability	of	being	matched,	an	estimate	of	
the total population Ntotal is

A2:	 An	 example	 of	 deriving	 the	 conditional,	marginal,	 and	 joint	
probabilities	at	the	core	of	pedigree	reconstruction.	Recalling	from	
Appendix 1:	A1,	individuals	exist	in	one	of	four	segments	(in	bold):

Condition Sampled Unsampled Marginals

Matched Nlinked Ninferred Nmatched

Unmatched Nunlinked Ninvisible Nunmatched

Marginals Nsampled Nunsampled Ntotal

(1)Ntotal = Nlinked + Nunlinked + Ninferred + Ninvisible.

(2)p(S|M) =
Nlinked

Nlinked + Ninferred

(3)p(M| S) =
Nlinked

Nlinked + Nunlinked

.

(4)Plinked = p(S|M) ∗p(M| S)

(5)Ntotal =
Nlinked

Plinked
.

F I G U R E  A 1 Study	area	in	Vermont,	USA	(1650 km2;	gray	
polygon)	where	we	simulated	a	spatially	explicit	moose	(Alces 
americanus) population and various genetic sampling schemes. 
Simulated	moose	ranged	primarily	around	the	study	area	(green	
polygon),	though	dispersals	did	occur	beyond	this	area.

F I G U R E  A 2 An	example	of	the	simulated	spatial	sampling	used	
in	this	study.	Each	cell	represents	a	1 km2 area, with color values 
indicating	the	local	relative	abundance	of	moose	(Alces americanus). 
Cells	were	randomly	selected	(enclosed	in	yellow	boxes),	stratified	
by	relative	abundance	values.
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Marginal	and	joint	probabilities	can	be	estimated	from	these	fre-
quencies,	which	allow	adult	population	estimates:

Condition Sampled Unsampled Marginals

Matched plinked pinferred pmatched

Unmatched punlinked pinvisible punmatched

Marginals psampled punsampled 1.00

Under the assumption that the sampling and matched are inde-
pendent characteristics, p(sampled|matched) = p(sampled), and p(ma
tched|sampled) = p(matched).	Assuming	a	beta	prior	distribution	with	
hyperparameters	α and β	 can	be	established	 for	 each	psampled and 
pmatched,	the	binomial	successes	and	failures	from	the	observed	pedi-
gree	data	can	be	used	to	update	these	hyperparameters	using	the	

Bayesian	conjugate	solutions,	providing	a	posterior	beta	distribution	
that reflects the current knowledge of p(sampled) and p(matched):

��

sampled
= � + Nlinked Equation	5 ��

matched
= � + Nlinked Equation	6

��
sampled

= � + Ninferred Equation	7 ��
matched

= � + Nunlinked Equation	8

In	 this	 application,	 prior	 distributions	 are	 vague,	 with	 no	 prior	
knowledge	 influencing	 these	 error	 distributions.	 The	 posterior	
distributions	 (beta	distributions)	 provide	 a	means	of	 incorporating	
uncertainty	 into	 the	 pedigree	 reconstruction	 (Fink,	1997), as ran-
dom values of p(sampled) and p(matched)	can	be	drawn	from	each	
distribution	 in	 a	 bootstrap	 simulation,	 and	 N-hat is calculated in 
Appendix 1:	A1.	Confidence	intervals	on	N	can	be	obtained	by	sum-
marizing	the	bootstrap	results.
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