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Abstract
The conservation and management of wildlife populations, particularly for threatened 
and endangered species are greatly aided with abundance, growth rate, and density 
measures. Traditional methods of estimating abundance and related metrics represent 
trade-offs in effort and precision of estimates. Pedigree reconstruction is an emerg-
ing, attractive alternate approach because its use of one-time, noninvasive sampling 
of individuals to infer the existence of unsampled individuals. However, advances in 
pedigree reconstruction could improve its utility, including forming a measure of pre-
cision for the method, establishing required spatial sampling effort for accurate esti-
mates, ascertaining the spatial extent of abundance estimates derived from pedigree 
reconstruction, and assessing how population density affects the estimator's perfor-
mance. Using established relationships for a stochastic, spatially explicit simulated 
moose (Alces americanus) population, pedigree reconstruction provided accurate esti-
mates of the adult moose population size and trend. Novel bootstrapped confidence 
intervals performed as expected with intensive sampling but underperformed with 
moderate sampling efforts that could produce abundance estimates with low bias. 
Adult population estimates more closely reflected the total number of adults in the 
extant population, rather than number of adults inhabiting the area where sampling 
occurred. Increasing sampling effort, measured as the proportion of individuals sam-
pled and as the proportion of a hypothetical study area, yielded similar asymptotic 
patterns over time. Simulations indicated a positive relationship between animal den-
sity and sampling effort required for unbiased estimates. These results indicate that 
pedigree reconstruction can produce accurate abundance estimates and may be par-
ticularly valuable for surveying smaller areas and low-density populations.
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1  |  INTRODUC TION

Precise and unbiased estimates of abundance, growth rate, and 
density are often critical for developing effective wildlife manage-
ment strategies, especially for threatened and endangered species 
(Williams et al., 2002). However, such estimates can be difficult to 
obtain (Ripple et al., 2015). Many species inhabit remote areas where 
terrain and vegetation conditions make surveying difficult. Some 
species also avoid humans or are secretive, limiting direct observa-
tion (Morellet et al., 2007; Ripple et al., 2015). Abundance estimates 
generally must account the inability of observer(s) to detect all indi-
viduals, as complete, unbiased counts are rarely possible. However, 
methods to estimate population size are often costly and, in many 
cases, impractical due to constraints on time, funding, and logistics 
(Morellet et al., 2007; Rabe et al., 2002). As many wildlife popula-
tions face threats from a changing climate and other anthropogenic 
pressures (Ripple et  al.,  2015), improved abundance estimators 
would be beneficial, particularly for species and populations that are 
difficult to survey.

There are several methods of estimating population size, 
trend, and density, and their applications represent trade-offs in 
the spatial scale surveyed, effort (and cost) required, and preci-
sion of abundance estimates. For species that are not easily in-
dividually identifiable, raw counts of individuals made from the 
air- or ground-based transects are adjusted to account for detec-
tion probability with sightability (Bontaites et  al., 2000; Samuel 
et al., 1987) or distance sampling models (Buckland et al., 1993). 
These survey methods can be used to monitor populations across 
large areas, but often are prohibitively expensive to conduct reg-
ularly (Cook & Jacobson,  1979; Rabe et  al.,  2002) and may not 
provide estimates precise enough of abundance for low-density 
or cryptic species that are useful for their conservation (Olson 
et  al.,  2005). For species in which individuals can be uniquely 
distinguished (i.e., through distinctive physical characteristics, 
researcher marks like tags or collars, or genetic markers), capture–
mark–recapture (CMR; Otis et  al.,  1978; Pollock & Otto,  1983) 
and, more recently, spatial capture recapture (SCR; Efford, 2004; 
Borchers & Efford, 2008) models are common methods for esti-
mating abundance. These methods use sighting data of individuals 
over repeated surveys to estimate abundance while accounting 
for imperfect detection (Pollock & Otto, 1983). These methods re-
quire repeated surveys to collect observation data, which can in-
crease costs and still may not yield enough information to identify 
population trends, particularly for wide-ranging, low-density spe-
cies (Lukacs & Burnham, 2005; Royle et al., 2018). Most recently, 
close-kin capture–mark–recapture methods relax the assumption 
of “recapture” to “recapture of close kin”, opening new avenues 
of population estimation using samples from both living and dead 
individuals (Bravington et  al.,  2016; Marcy-Quay et  al.,  2020). 
Finally, abundance methods using animal sign or public sightings 
reduce costs and effort for data collection, but generally yield 
lower precision compared to measures of abundance that account 
for detection (Härkönen & Heikkilä, 1999; Rönnegård et al., 2008).

Pedigree reconstruction is an emerging contribution to the 
growing toolkit of abundance estimation methods (Arandjelovic & 
Vigilant, 2018) and a useful approach for estimating abundance of 
low-density, cryptic species that are otherwise difficult to study. 
Pedigree reconstruction uses genetic data collected from many indi-
viduals to create a pedigree for the population (Figure 1). Pedigrees 
are used for a variety of conservation applications (Blouin, 2003) as 
they provide valuable population genetics measures related to in-
breeding (Jones et al., 2002; Liberg et al., 2005) and effective pop-
ulation size (Luikart et al., 2010). Pedigree reconstruction also infers 
the existence and genotypes of individuals that are not directly 
sampled, which allows for estimates of population size. This is pos-
sible when an offspring and only one of its parents are sampled—
in this case, another (unsampled) parent must exist as a portion of 
its genetic information is contained in the offspring's genotype. By 
combining data on relationships between sampled individuals and 
inferred unsampled individuals, pedigree reconstruction can pro-
vide an abundance estimator by correcting the count of sampled 
and inferred individuals with these “invisible” individuals (Creel & 
Rosenblatt, 2013; Figure 1).

The prospect of estimating abundance using pedigree recon-
struction is an active area of inquiry (Creel & Rosenblatt,  2013; 
Ekblom et  al.,  2021; Hettiarachchige & Huggins, 2018; Larroque 
& Balkenhol,  2023; Nielson et  al.,  2001; Skaug,  2001, Spitzer 
et  al.,  2016). The approach is attractive because it can use non-
invasive genetic samples and only requires individuals to be 

F I G U R E  1 An example pedigree reconstructed from genetic 
data that identified females (circles), males (squares), and their 
familial relationships (black lines). Individuals may be genetically 
sampled (gold) or unsampled (blue), and genetically matched 
(solid) or unmatched (patterned) to sampled offspring. Pedigree 
reconstruction allows the inference of unsampled individuals by 
genotypic data from offspring and mate (inferred individuals; blue, 
solid), and of unsampled individuals that have not been matched to 
offspring (invisible individuals; blue, patterned).

 20457758, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10650, W

iley O
nline L

ibrary on [19/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  3 of 18ROSENBLATT et al.

sampled once (in contrast with genetic CMR studies). Creel and 
Rosenblatt (2013) successfully validated this approach with a simu-
lated African lion (Panthera leo) population. Spitzer et al. (2016) then 
applied this pedigree reconstruction approach to two brown bear 
(Ursus arctos) populations and found that pedigree reconstruction 
estimates were comparable to existing CMR estimates. Larroque and 
Balkenhol (2023) used simulated wild boar (Sus scrofa) and red deer 
(Cervus elaphus) populations to compare pedigree reconstruction 
estimation with CMR and alternative abundance estimators reliant 
on identifying kinship relationships. Larroque and Balkenhol (2023) 
demonstrated the pedigree reconstruction was precise and insen-
sitive to population fecundity, but cautioned its accuracy is highly 
dependent on knowing roughly how many individuals should be 
sampled. With further development, the pedigree reconstruction 
method could provide affordable and efficient abundance estimates 
for wildlife studies.

While pedigree reconstruction is an attractive alternative to 
other commonly used methods, its application can be broadened 
by addressing known limitations. First, pedigree estimation has 
been developed to produce point estimates of abundance, but no 
measure of precision has been established for this method, nor 
has its ability to estimate population growth rates been evaluated 
(Spitzer et al., 2016). Second, the sampling effort required for ped-
igree estimation has been evaluated only in terms of sampling a 
proportion of unsampled individuals in a target population (Creel 
& Rosenblatt, 2013). However, individuals are distributed nonran-
domly in space, and at the time of sample collection the identity of 
individuals is unknown. Practically speaking, the study design must 
consider the spatial dynamics of a population such as home range 
size and habitat use to maximize the number of uniquely sampled in-
dividuals under consideration. Finally, the relationship between the 
accuracy of estimates from pedigree reconstruction and population 
density is unknown yet crucial. Pedigree reconstruction may meet a 
need for a noninvasive, efficient, flexible, and affordable approach 
to monitoring populations for a variety of species. However, these 
critical questions must be tested with spatially explicit, simulated 
populations along with comparisons with established abundance 
measures in well-studied populations to better inform applications 
of this method with wild populations.

In this study, we enhanced the Creel and Rosenblatt (2013) ped-
igree reconstruction population estimator by integrating a Bayesian, 
probabilistic approach to estimate population size along with a mea-
sure of uncertainty. We used a stochastic, spatially explicit simulated 
moose (Alces americanus; Figure 2) population to (1) evaluate the ac-
curacy of an updated pedigree reconstruction approach to estimate 
abundance and growth rates with varying sampling efforts and (2) 
develop a location-based, noninvasive sampling design that mim-
ics a realistic field study and identify the effort level required for 
accurate abundance and growth rate estimates. We then (3) inves-
tigate the relationship between the bias and precision of pedigree 
reconstruction abundance estimates and population density. This 
study advances a promising method for estimating abundance and 
strengthens its capacity for application to wildlife populations.

2  |  METHODS

2.1  |  Pedigree reconstruction population estimator

A population of adult individuals can be partitioned into four seg-
ments, as defined by pedigree reconstruction (Appendix 1: A1 and 
A2). The first two segments include individuals that are genetically 
sampled and are either related to other sampled individuals (par-
ent–offspring relationship derived from a reconstructed pedigree; 
Nlinked), or unrelated to any other sampled individual (Nunlinked). The 
third segment includes individuals that are missed by genetic sam-
pling efforts but have left evidence of their existence in the popu-
lation because they have successfully reproduced (Ninferred). These 
unsampled individuals are inferred if their mate and at least one of 
their offspring have been sampled. The fourth segment includes 
individuals that are both missed by genetic sampling and have no 
evidence of successful reproduction (and thus cannot be inferred) 
and are invisible to pedigree reconstruction (Ninvisible). An estimate 
of the adult population size is the sum of these four components 
(Equation 1), which can be estimated by computing the conditional 
probabilities based on the three known terms and is an improvement 
of the original Creel and Rosenblatt  (2013) estimator (Appendix 1: 
A1). This modification of pedigree reconstruction as a means of 
population estimation follows the logic of basic CMR approaches 
in which a population estimate is obtained by dividing the known 
sample by an estimate of capture probability (Williams et al., 2002). 
Importantly, only adult individuals capable of breeding are consid-
ered in these four conditions, whereas immature individuals help 
identify adult individuals as linked or inferred individuals. Population 
estimates from pedigree reconstruction should therefore be inter-
preted as the size of the adult segment of a population.

Although the approach provides a method for estimating 
total population size, it lacks integration of uncertainty around 
parameter estimates, which could be sizeable in cases where too 
few individuals are sampled (Spitzer et al., 2016). Assuming high 
confidence in the ability of genetic information to determine re-
lationships and infer the existence of unsampled individuals, 

F I G U R E  2 An adult male moose (Alces americanus) shedding its 
winter coat in Vermont, USA. Photograph by E. Rosenblatt.
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uncertainty in the estimates from pedigree reconstruction lies in 
the estimation of the marginal probabilities (psampled and pmatched). 
Observed numbers of individuals used to calculate these marginal 
probabilities are subject to sampling effort and study design, and 
therefore represent a random process that introduces uncertainty. 
We propose that a beta distribution can be used to set prior prob-
abilities on the psampled and pmatched. The observed data, derived 
from pedigree reconstruction, can then be used to update vague 
prior distributions to posterior distributions, which in turn can be 
used in bootstrapping to generate the joint probabilities and pop-
ulation estimates across multiple trials (Appendix  1: A2). In the 
bootstrap, random values of both marginal probabilities can be 
drawn and multiplied together to calculate a random sample of 
joint probabilities. These joint probabilities can be used to produce 
a random sample of likely population estimates, from which confi-
dence intervals can be obtained that provide measures of uncer-
tainty (Appendix 1: A2).

As with any method of estimating population size, there are 
several assumptions that must be met when using pedigree recon-
struction. First, the probability of being sampled (psampled) should 
not differ between matched and unmatched individuals. psampled 
is calculated from the proportion of linked individuals that were 
sampled (Appendix 1: A1); there is no means of estimating psampled 
for unmatched individuals, as the number of “invisible” individuals 
is unknown. For the same reason, the probability of being matched 
to another individual (pmatched) should not differ between sampled 
and unsampled individuals. Second, this approach considers only 
sexually mature adults in calculating conditional and joint proba-
bilities but requires genetic samples from all age classes to iden-
tify adults as linked, unlinked, or inferred. Similarly, population 
size estimates correspond to the total adult population size, which 
can easily be corrected to include juveniles if age distributions are 
known for the population. Third, mortality must be accounted for 
when reconstructing the pedigree, and should not include sam-
ples from deceased individuals other than to infer individuals. If 
not accounted for, pedigree reconstruction will accumulate indi-
viduals no longer present in the population in its calculation of 
total population size, resulting in an overestimation of abundance 
(Creel & Rosenblatt, 2013). Creel and Rosenblatt (2013) presented 
approaches to account for mortality in pedigree reconstruction, 
primarily by applying available mortality rates to sampled indi-
viduals over multiple years of sampling. Fourth, sample collection 
must allow the designation of individuals as a juvenile or an adult. 
Finally, all adults must exist in one of the four states described 
above; additional states can lead to biased estimation of both mar-
ginal probabilities.

2.2  |  Applying updated pedigree reconstruction to 
a simulated moose population

To evaluate the performance of pedigree reconstruction, we used 
an individual-based model (Grimm,  2019) to simulate a moose 

population. Moose are a candidate species for the use of pedigree re-
construction as they often inhabit remote, rugged areas with dense 
vegetation and spend much of the year in solitude or small groups 
(Ballard et al., 1991; Harris et al., 2015). We simulated the popula-
tion dynamics of a stable moose population over 25 years in a 1650-
km2 management unit in northeastern Vermont (Figure A1). Each 
year of our simulation began at the beginning of winter (December) 
and included the annual processes that a moose experiences in the 
wild, including a winter survival (February–April), synchronous birth 
pulse and dispersal (May), and summer survival (May–December; 
Figure 3). Samples (e.g., scat) for pedigree reconstruction were col-
lected during winter. We emphasize that our goal was not to study 
this specific population in Vermont. Rather, our aim was to apply 
the dispersal, birth, and death of individuals using realistic, empiri-
cal rates from multiyear studies of moose in the region to develop a 
known pedigree and derive population estimates for the population.

2.3  |  Individual-based model simulation

We used demographic data available for the moose populations, 
available from radio-collar studies across the region, adjusted to 
ensure stable population growth (Table 1; Ellingwood et al., 2020). 
Our individual-based model simulation was conducted in R, and 
source code is available in the Data Availability statement (R Core 
Team, 2021). We incorporated senescence (Gasaway et al., 1983) in 
our simulated population by increasing the odds of mortality by 1.6-
fold every year after 9 years of age (Ericsson & Wallin, 2001) and 
ceasing reproduction in adult females after 14 years of age (Ericsson 
et al., 2001). We used age-specific vital rates until 15 years for both 
sexes, after which individuals survived and reproduced at a constant 
rate (Table 1). Birth rates, expressed as newborn calves per cow per 
year, rapidly increased with age, reaching a maximum rate for adults 
aging from 3 to 14 (Table 1). Twinning is rarely observed in Vermont 
and other New England states (DeBow, 2020), so we limited birth 
rates to a single newborn calf per adult female, per year. These vital 
rates corresponded to a stable, slightly positive population trend 
(λasymptotic = 1.003), estimated using the popbio package in R (R Core 
Team, 2021; Stubben & Milligan, 2007). Our simulated population 
began with 659 individuals with a stable age distribution (Table 1; 
R Core Team, 2021; Stubben & Milligan, 2007).

We incorporated spatial movement and home range establish-
ment based on data available from studies in Vermont and neigh-
boring New Hampshire (Ball, 2017; Blouin et al., 2021a). Individuals 
in our simulated population were assigned random home range cen-
troids within the study area using the spsample() function in the sp 
package (Bivand et al., 2013; Pebesma & Bivand, 2005). We assigned 
locations based on global positioning system (GPS) collar data col-
lected on moose of the same sex and age in the study area, adjusted 
to be relative to each simulated animal's home range centroid (Blouin 
et al., 2021a, 2021b). Animal centroids would change as individuals 
dispersed, and location data would be updated as individuals aged 
into older age classes. We integrated available GPS collar data to 
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F I G U R E  3 A summary of the processes 
involved with each time step (year) of 
the simulated moose (Alces americanus) 
population. Demographic processes 
shown (inner cycle) include seasonal 
population sizes (boxes) influenced 
by age-specific survival rates (s), age-
specific birth rates (b), and timing of the 
population's birth pulse. Spatial dynamics 
shown (middle cycle) include the timing 
of mate selection, yearling dispersal, 
and home range adjustment with aging. 
Sampling focused on the population in 
early winter, prior to winter mortality.

TA B L E  1 Vital rates by sex, age, and season, and yearling dispersal distances used in the spatially explicit simulated moose (Alces 
americanus) population. Vital rates and dispersal distances were based on moose multiyear studies in Vermont and New Hampshire, 
USA (Ball, 2017; Ellingwood et al., 2020). Reduction in survival rates for older age classes were included to account for adult senescence 
(Gasaway et al., 1983).

Sex Age
Winter 
survival Birth rate

Summer 
survival Yearling dispersal distance (SE)

Segment of starting 
population (n; N = 659)

Female 0 (Calf) 0.70 0 0.70 – 72

1 0.93 0.07 0.95 2.3 km (0.4) 47

2 0.93 0.77 0.95 – 42

3–9 0.93 0.90 0.95 – 180

10 0.89 0.90 0.92 – 15

11 0.84 0.90 0.88 – 12

12 0.76 0.90 0.82 – 9

≥13 0.67 0.90 0.74 – 11

Male 0 (Calf) 0.70 – 0.70 – 72

1 0.88 – 0.90 9.3 km (3.1) 45

2–9 0.88 – 0.90 – 142

10 0.82 – 0.85 – 5

11 0.74 – 0.78 – 4

12 0.64 – 0.69 – 2

≥13 0.53 – 0.58 – 1
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allow for realistic variation in home range size and shape, and to es-
tablish both winter and annual home ranges. We used annual home 
ranges to determine mate selection and the use of the study area, 
while we used winter home ranges to develop spatially explicit sam-
pling for pedigree reconstruction.

In each year of the simulation, individuals began with established 
centroids and home ranges, and survived the winter at age-specific 
rates (Table 1) resulting from a Bernoulli process (the rbinom() func-
tion in R). Surviving females (>1 year old) then reproduced in the 
spring (May) with a random draw from a Bernoulli distribution based 
on their age-specific reproductive rate (Table 1). Reproducing moth-
ers were randomly assigned a mate from a list of candidate fathers 
(>3 years old) that were alive the previous breeding season (fall) and 
overlapped spatially. We determined overlap using 100% minimum 
convex polygons calculated using the adehabitatHR package in R 
(Calenge, 2006). Offspring were added to the population, with es-
tablished relationships to their parents. Newborn calves had home 
ranges that matched their mothers until they dispersed during the 
following year (Ballard et  al., 1991). At this time, all individuals in 
the population aged 1 year. New yearlings would then disperse at a 
random bearing (0–359) and distance drawn from a normal distribu-
tion derived from available estimates of dispersal distances (Table 1). 
Individuals then survived the summer to the end of the annual time 
step at age-specific rates (Table 1) using a Bernoulli process.

2.4  |  Genetic sampling of simulated individuals

We simulated noninvasive genetic sampling from fecal collection 
of the population in early and mid-winter months (December–
February) to determine individual identity, sex, and parent–offspring 
relationships. We assumed demographic closure during this period, 
which is appropriate as the early winter months precede the pe-
riod of greatest winter mortality (March–April; DeBow et al., 2021). 
Importantly, we assumed that a study of this nature could determine 
the basic age class (calf or adult) of an individual at collection from 
track and fecal pellet size (Franzmann & Schwartz, 2007; Koitzsch 
et al., 2022). Again, calves allow the identification of matched, sam-
pled adults and matched, unsampled adults, but are not included in 
the adult population estimate (Appendix 1: A1). We determined that 
if a cow with a dependent calf (<1 year old) was sampled, the calf 
would be sampled as well. We note that this determination did not 
violate the assumption that the probability of being sampled does 
not differ between matched and unmatched individuals. The pres-
ence (or absence) of calf sign should not influence the probability 
of its mother being sampled, as cow–calf pairs travel often in each 
other's tracks or in close proximity during the snowy, winter months 
considered in this study.

After a 20-year simulation period that established parent–off-
spring relationships, we simulated genetic sampling for moose over 
5 years to test the accuracy of the updated pedigree reconstruc-
tion estimator. In each year, previously unsampled individuals were 
added to the pedigree, broadening and lengthening the pedigree 

with each passing generation. We did not incorporate duplicated 
samples from the same individual. We did not incorporate uncertain-
ties in pedigree reconstruction, and assumed that parent–offspring 
assignments were accurate.

2.5  |  Objective 1: Accuracy of updated pedigree 
reconstruction

In every year of sampling, we randomly sampled animals that existed 
in the study area at a range of sampling intensities over 100 iterations: 
10%–90% of unsampled individuals, in 10% increments, resulting in 
900 sampling iterations each year; referred hereafter as population-
based sampling (Table 2). We calculated the number of live adults 
that were linked (sampled and matched to an offspring), unlinked 
(sampled and unmatched to an offspring), and inferred (unsampled, 
but matched to an offspring) for each iteration (Appendix 1: A1). We 
then estimated psampled and pmatched, and estimated adult population 
size based on Equation 4 in Appendix 1: A1. We evaluated the preci-
sion, bias, and accuracy of these estimates using coefficient of vari-
ation (CV), scaled mean error (SME), and scaled root mean squared 
error (SRMSE), respectively, relative to the known adult population 
size inside of the 1650 km2 study area. We also used these popula-
tion estimates to estimate annual population growth rate and com-
pared these growth rate estimates to the true annual population 
growth rate. We also tested the ability of bootstrapping to estimate 
uncertainty around each population estimate. For each sampling it-
eration, we calculated the 95% confidence intervals using the ap-
proach described in Appendix 1: A2 and reported the proportion of 
these iterations that contained the known population size.

2.6  |  Objective 2: Spatial sampling effort for 
accurate population estimates

We quantified the spatial extent required to reach accurate popu-
lation estimates using pedigree reconstruction (hereafter spatially 
based sampling), as a more easily quantified metric of effort com-
pared to population-based sampling. We “surveyed” a varying num-
ber of 1 km2 grid cells within a sampling grid overlaid across the 
study area and collected samples from individuals that used those 
grid cells (Figure A2). We explored a range of realistic sampling ef-
forts, where new cells were sampled each year. We randomly sam-
pled 10–200 grid cells annually, representing 0.06%–12.2% of the 
study area, with 100 sampling iterations for each level of spatially 
based sampling in each year. The resulting 10,000 sampling itera-
tions represented an annual survey effort of 10–200 km2 (Table 2). 
We randomly selected grid cells for sampling, weighted by the num-
ber of moose using each grid cell to mimic prior knowledge avail-
able to wildlife practitioners (i.e., habitat suitability or occurrence 
data). To calculate these weights, we generated a 100% minimum 
convex polygon for each individual using the adehabitatHR package 
(Calenge, 2006), and used the over() function from the sp package 
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(Bivand et  al.,  2013; Pebesma & Bivand,  2005) to calculate the 
number of individuals overlapping each grid cell (Figure A2). These 
abundances were scaled from 0 to 1 based on the grid cell with the 
highest abundance value.

When a grid cell was selected for sampling, we calculated the 
utilization probability for each moose using that pixel as a proxy for 
encountering scat, using their winter locations and the kde2d() func-
tion from the MASS package (Venables & Ripley, 2002). We scaled 
these utilization probabilities between 0 and 1 for each animal based 
on their highest utilization probability estimated across all grid cells 
and used these scaled probabilities as the probability of sampling 
each animal that used a sampled grid cell. In doing so, we assumed 
that if an individual was using a grid cell, detection was a process 
based on utilization, rather than the ability of a survey team to find 
a scat. Due to imperfect detection and stratified cell selection, total 
sample sizes were lower in the spatial sampling approach (Objective 
2) compared to the population-based sampling (Objective 1). As with 
Objective 1, each year of sampling both broadened and lengthened 
the estimated pedigree. We calculated precision (CV), bias (SME), 
accuracy (SRMSE), growth rate, and confidence intervals to evalu-
ate the performance of the pedigree reconstruction estimator using 
spatial sampling.

2.7  |  Objective 3: Performance of estimator across 
varying local animal densities

We delineated nine, equally sized zones (298 km2) that spanned the 
area of the simulated population to test how local densities influ-
ence what sampling intensity is required. We used location data 
from the final year of the 25-year population simulation to calculate 
the density within each zone. We then sampled 1%–20% of 1 km2 
grid cells delineated for Objective 2 in each zone (3–60 km2) with 
the same stratified, random sampling design. We then used pedigree 
reconstruction to estimate population density (with 95% confidence 
intervals) for each zone across sampling efforts. We examined the 
role of population density in the required sampling effort for pedi-
gree reconstruction to produce accurate abundance estimates and 
to detect changes in population size.

3  |  RESULTS

Our simulated moose population exhibited a variable trajectory, 
with our initial population of 659 moose growing very slowly to 872 
moose by the end of the 25-year simulation (λ = 1.011). Of these 

TA B L E  2 Average number moose sampled in each year of sampling a simulated moose (Alces americanus) population. Moose of all ages 
were available for sampling, but pedigree reconstruction estimates the number of adults in this simulated population. Sampling efforts for 
spatially based sampling are thinned for brevity.

Year 1 2 3 4 5

Population size 767 771 773 796 828

Adults 597 605 588 604 638

Sampling effort Mean number of new individuals sampled (range)

Population-based 
sampling

10% 105 (76–131) 92 (69–122) 86 (55–117) 83 (58–109) 79 (59–102)

20% 201 (162–236) 159 (116–202) 133 (106–169) 125 (103–155) 111 (84–139)

30% 293 (259–335) 202 (152–246) 161 (130–194) 137 (105–169) 131 (98–158)

40% 380 (346–411) 225 (190–259) 167 (134–194) 147 (116–169) 142 (115–169)

50% 459 (432–495) 237 (206–271) 169 (141–192) 155 (131–176) 151 (126–173)

60% 536 (501–571) 233 (195–261) 171 (150–192) 162 (135–194) 160 (136–182)

70% 604 (583–633) 221 (189–246) 170 (146–188) 171 (148–195) 169 (147–187)

80% 664 (635–688) 208 (185–242) 173 (154–195) 179 (158–194) 179 (161–200)

90% 717 (700–735) 188 (170–207) 179 (169–194) 186 (174–201) 186 (175–199)

Spatially based 
sampling

10 km2 66 (46–87) 59 (39–85) 53 (30–78) 51 (31–73) 54 (34–73)

30 km2 169 (146–204) 124 (102–151) 109 (89–138) 103 (75–133) 101 (71–125)

50 km2 244 (210–273) 160 (133–206) 132 (100–158) 124 (98–149) 120 (92–143)

70 km2 302 (261–349) 177 (145–202) 144 (109–169) 138 (110–178) 130 (103–160)

91 km2 346 (313–377) 188 (159–222) 153 (129–182) 145 (123–163) 137 (111–154)

111 km2 386 (353–417) 193 (149–222) 157 (122–179) 150 (128–175) 142 (117–169)

131 km2 415 (383–443) 196 (159–224) 160 (140–191) 154 (130–168) 145 (122–175)

151 km2 442 (403–475) 196 (170–233) 164 (135–187) 157 (142–171) 147 (126–168)

171 km2 465 (433–496) 195 (173–229) 163 (136–185) 160 (142–180) 154 (131–172)

191 km2 483 (442–512) 197 (166–231) 164 (140–183) 163 (140–188) 156 (136–173)

201 km2 489 (459–512) 198 (166–229) 165 (147–189) 164 (147–182) 156 (137–173)
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8 of 18  |     ROSENBLATT et al.

individuals in the final year of the simulation, 828 moose used some 
portion of the study area (Table 2). The adult segment of the popula-
tion (≥2 years old) followed a similar trajectory, with an initial 517 
adult moose increasing to 675 adult moose, 638 of which overlapped 
with the study area (Table 2; Figure 4a,b).

3.1  |  Objective 1: Accuracy of updated pedigree 
reconstruction

By sampling new individuals over multiple years, pedigree recon-
struction provided accurate estimates of the adult moose popu-
lation and its rate of change. With adequate population-based 
sampling, pedigree reconstruction estimates were within 10% of 
the true number of adults in the population (Figures 4c and 5). As 
sampling effort increased within each year, estimates were as-
ymptotic, indicating a threshold at which further sampling effort 
yielded little benefit (Figure 4c). Precision was high for all sampling 
intensities, as measured by CV, and increased for all sampling in-
tensities as surveys continued through time, reaching under 5% 
for all sampling intensities (Figure  5). Sampling effort necessary 
for minimizing bias (SME) and maximizing accuracy in population 
estimates decreased as the survey period progressed (Figure 5). In 
the first year of sampling, estimates with low bias (> −5% scaled 
mean error; SME) and high accuracy (SRMSE) were only possible 
by sampling the majority of unsampled individuals (90%; Figure 5). 
This low bias threshold was met with 60% sampling by Year 2, and 
50% sampling by Year 3 (Figure  5); Bias with sampling ≤40% of 
unsampled individuals stabilized below the −5% SME threshold, in-
dicating that sampling at these lower levels would not reduce bias 
with additional sampling (Figure 5), even with a changing popula-
tion size. Alternatively, with intensive population-based sampling 
over the 5-year survey, estimates were slightly biased (SME > 0) 
to overestimate abundance by an average of 3.5%, due to the in-
clusion of previously sampled adults that exited the study area 
through emigration or death (Figure 5).

Population growth rates derived from pedigree reconstruction 
(Nt+1/Nt) were greatly overestimated in the first 2 years of sampling, 
particularly when sampling effort was low (Figure 4d). As sampling 
progressed throughout the simulated study, broadening and length-
ening the estimated pedigree, estimated growth rates became as-
ymptotic around the true population growth rate for each interval, 
and the sampling effort necessary to accurately estimate population 

growth rate decreased. Growth rate estimates could distinguish be-
tween slight population growth (Year 3–4 and Year 4–5) and decline 
(higher sampling efforts, Year 2–3, Figure  4d), even in this mostly 
stable population.

Our proposed method to estimate uncertainty around popu-
lation estimates contained the true population size with enough 
sampling intensity over multiple surveys. When 50% of unsampled 
individuals were sampled in three or more years, 95% confidence in-
tervals overlapped the true populations size as predicted (Figure 4e). 
Confidence intervals for lower sampling intensities did not include 
the known population size as predicted (Figure 4e).

3.2  |  Objective 2: Spatial sampling effort for 
accurate population estimates

Our simulated sample collection across our study area yielded pat-
terns consistent with our population sampling scheme reported 
in Objective 1 while providing a more intuitive metric of effort 
(Figure  6a). However, precision, bias, and accuracy were lower 
relative to those attained by population-based sampling (Objective 
1; Figure 5). While we stratified sampling based on the numbers of 
moose using each grid cell, even extensive sampling efforts did not 
capture more than 63% of unsampled individuals (Figure 6b, Year 
1), in part because the probability of sample detection was not 1 
in this simulation. Therefore, our inference that spatial sampling is 
consistent with population-based sampling is limited to the propor-
tion of previously unsampled individuals sampled realized by our 
spatial sampling (Figure 6b). Given the assumptions and conditions 
of our simulated moose population and survey methods, collecting 
samples from moose over 100 km2 for 5 years would produce mini-
mally biased estimates (SME ≥ −5%) of the total adult population 
(Figures 6a and 5). As with population-based sampling, both preci-
sion and accuracy increased for all sampling intensities as surveys 
continued through time. Population growth rate estimates can be 
unbiased over time, with accurate estimates of slight population 
increases from substantial sampling effort (150 km2; Figure  6c). 
Our measures of uncertainty did not perform well in our spatial 
sampling simulation, with 95% confidence intervals not containing 
the true population size for 95% of simulations (Figure 6d). This un-
derperformance is most likely the result of the limited proportion 
of the population sampled achieved with spatially based sampling 
(Figure 6b).

F I G U R E  4 Performance of pedigree reconstruction to estimate the adult moose (Alces americanus) population size and trend across a 
range of population-based sampling intensities. Sampling intensity refers to the proportion of unsampled individuals sampled each year. 
(a) The number of adults in the study area across the 5 years of sampling, after a 20-year burn-in period. (b) A subset of animal locations 
illustrating the distribution of animals across the study area. (c) The bias in pedigree reconstruction estimates (points) and the average bias 
across these simulations (blue lines). Solid black lines indicate no bias in a population estimate, and black dashed lines indicate 10% bias. (d) 
Point and average estimates of population growth rate (lambda; points and blue lines, respectively), compared to the population's growth 
rate (black solid line). (e) Proportion of population sampling iterations for which the 95% confidence intervals overlapped the true adult 
population size. Our uncertainty measure is correct when these proportions meet or exceed their expected frequency.
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10 of 18  |     ROSENBLATT et al.

3.3  |  Objective 3: Performance of estimator across 
varying local animal densities

In the final winter of the 25-year simulation, moose densities var-
ied from 0.151 to 0.822 moose per km2 across the nine 298 km2 
zones delineated for this objective (Figure  7a). For perspective, 

the simulated density for the entire study area was 0.528 moose 
per km2. There was a clear, positive relationship between density 
and the level of sampling effort required for unbiased estimates 
of population size as estimated by 1-year pedigree reconstruc-
tion as density increases (Figure 7b,c). Importantly, the total area 
to be sampled with low bias depended on the zone's density: 

F I G U R E  5 A comparison of precision, bias, and accuracy for pedigree reconstruction abundance estimates between various sampling 
intensities of the population (population-based sampling) or of the study area (spatially based sampling). We quantified precision as the 
coefficient of variation, bias as the scaled mean error, and accuracy as the scaled root mean squared error. For reference, scaled mean error 
of −5% and −10% are indicated with a dotted and dashed line for each sampling scheme, respectively.

F I G U R E  6 Performance of pedigree reconstruction over a range of spatial sampling intensities. Area sampled refers to the area surveyed 
in the study area considered. (a) The bias in pedigree reconstruction estimates using spatially based sampling (points) and the average bias 
across these simulations (blue lines). Solid black lines indicate no bias in a population estimate, and black dashed lines indicate 10% bias. 
(b) The equivalent population sampling intensities for spatial sampling efforts simulated, with comparison with mean bias from Objective 
1 (green dashed line). (c) Estimates of population growth rate (lambda) across varying spatial sampling efforts. (d) Proportion of spatial 
sampling iterations that successfully captured the true population size within 95% confidence intervals.
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12 of 18  |     ROSENBLATT et al.

oversampling low-density zones produced positively biased popu-
lation estimates, while undersampling high-density zones pro-
duced negatively biased population estimates. However, the 
bootstrapped confidence intervals were sufficiently large enough 
to capture the true population estimate such that as sampling ef-
fort increased, 100% of the bootstrapped intervals contained the 
true population size (Figure 7d). The spatial sampling required for 
95% confidence intervals to overlap true abundance with ≥95% 
frequency increased with local density, yet 95% confidence inter-
vals for the highest local densities did not overlap true local abun-
dance with ≥95% frequency (Figure 7d).

4  |  DISCUSSION

We improved pedigree reconstruction as an abundance estimator 
by integrating a probabilistic approach that produces accurate es-
timates of abundance and annual growth and provides metrics of 
uncertainty around these estimates. We demonstrated the use of 
stratified, random sampling across a discrete area as an approach 
without requiring some prior knowledge of the population's size 
(Larroque & Balkenhol,  2023). Accurate estimates of population 
size and annual growth were attainable for an entire population 
only with sufficient sampling over multiple years, yet this required 

F I G U R E  7 Performance of pedigree reconstruction across zones with varying local densities of a simulated moose (Alces americanus) 
population. (a) Sample collection was simulated across 3–60 km2 of nine 298 km2 localities, allowing for pedigree reconstruction and 
abundance estimation in each locality. (b) Bias of simulated point estimates across spatial sampling intensity and across local density. (c) 
Average bias of simulated point estimates. (d) Proportion of spatial sampling iterations for each locality that overlapped the true population 
size within 95% confidence intervals.

 20457758, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10650, W

iley O
nline L

ibrary on [19/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  13 of 18ROSENBLATT et al.

effort decreased when considering smaller localities and low popu-
lation densities. This study provides a key step in further develop-
ing pedigree reconstruction as a reliable population estimator to be 
added to existing approaches for estimating abundance (Larroque & 
Balkenhol, 2023).

Our results indicate that pedigree reconstruction may be an ap-
propriate estimation tool for low-density, small populations, partic-
ularly for rare and endangered species. These conditions may prove 
difficult for other genetic abundance measures such as genetic 
mark–recapture methods, which rely on multiple samples from each 
individual (Puechmaille & Petit, 2007), and close-kin mark–recapture 
methods, which rely on sampling harvested individuals (Bravington 
et al., 2016; Marcy-Quay et al., 2020). Our selection of moose as a 
test species, along with testing the role of local density on accuracy, 
demonstrates this. When we considered the population (n = 828 
moose, 638 adults in the final year of the simulation), pedigree re-
construction produced accurate estimates after multiple years of 
intensive sampling. However, when the population was broken into 
nine localities varying in moose density, pedigree reconstruction 
could estimate population size within the lower density segments 
with much less effort (though with a cost in precision) in only one 
survey. This is likely due to a smaller pedigree to reconstruct, requir-
ing fewer individuals be sampled than in a larger population of simi-
lar density. We present our findings with caveats that our inferences 
are based on this simulated moose population, and that inferences 
may differ for other species with other life history characteristics 
and reproductive strategies.

Pedigree reconstruction estimates abundance beyond the dis-
crete area, jurisdiction, or protected area where sampling occurs, 
leading to positive bias in abundance estimates for discrete areas of 
interest. This bias is likely the result of inferred and linked individuals 
that either leave the population through emigration or mortality, es-
pecially if the pedigree is reconstructed with samples that are com-
bined over years. However, this positive bias appears to be small, 
predictable, and easily corrected for. Species life history, dispersal, 
and reproductive behavior may be contributing factors in the bias of 
pedigree reconstruction estimates.

A key assumption behind pedigree reconstruction is that the 
probability of being sampled and the probability being matched 
to an offspring are independent of each other. This method re-
lies on observed conditional probabilities p(sampled|matched) 
and p(matched|sampled) to estimate the marginal probabilities 
psampled and pmatched, respectively (Appendix 1: A2). Matched and 
unmatched individuals may have different probabilities of being 
sampled if a species' life history leads to matched adults being 
easier to sample than unmatched individuals (or vice versa). In 
our simulated study, if an adult female or a calf were included in 
the sample, both individuals were sampled. However, the simu-
lated means of sample collection, where a surveyor intersects 
tracks and samples from an individual in snow, likely reduces any 
increased probability of sampling matched adults over sampling 
unmatched adults. Study designs must consider seasonal or life 
stage behaviors that could make sampling unmatched individuals 

more difficult than sampling matched individuals. Sampled and 
unsampled individuals may have different pmatched if there is any 
bias in sampling their offspring. Study designs must ensure that 
sampling is distributed to ensure the sampling of offspring that 
can be matched to both sampled adults (linked) and unsampled 
adults (inferred; Appendix 1: A1). Knowledge of a species' disper-
sal behavior could improve study design by minimizing the risk of 
sampling offspring only from sampled adults.

Our simulated, spatially explicit moose population allowed us to 
develop an alternate metric of sampling effort, one based on sur-
veyed area rather than sampled individuals. This easily quantifiable 
approach maximizes the number of new individuals sampled in each 
survey while minimizing the costs of unknowingly resampling ani-
mals. Practitioners often seek a balance between maximizing the 
number of animals sampled and the spatial extent of sampling for 
an array of survey methods (Boulanger et al., 2004; Sun et al., 2014). 
This trade-off is also important for pedigree reconstruction, and 
while local densities are usually not known, proxies based on expert 
and local knowledge or general understanding of habitat suitability 
could inform this survey approach (Kuhnert et al., 2010; Pearman-
Gillman et al., 2020).

Pedigree reconstruction can be a cost-effective estimator 
if the probability of detecting an individual is maximized. In this 
context, the detection process refers to encountering genetic ma-
terial on the landscape. In this simulated study, high levels of spa-
tially based sampling (200 km2) after 3 years yielded an equivalent 
population-based sampling rate of under 50% sampling intensity. 
While this sampling rate produced accurate estimates of popula-
tion size, this effort is likely greater than what practitioners can 
adopt. This shortcoming may have resulted from our use of utiliza-
tion distribution values as a proxy for the probability of collected 
samples in a surveyed grid cell. Our coarse survey unit (1 km2) did 
not capture variation in finer scale utilization (Boyce, 2006), and 
we likely underestimated the probability of an animal using this 
spatial unit. We also did not consider aggregations of moose, oc-
curring in areas with favorable microclimate conditions, forage 
availability, and vegetative cover (Peek et al., 1974). By increasing 
detection of individuals by designing finer scale surveys and bene-
fiting from social groups or clumped resource availability, pedigree 
reconstruction may produce accurate estimates at lower survey 
efforts.

A key consideration for the use of pedigree reconstruction is 
the cost of collecting and genotyping genetic samples. Pedigree 
reconstruction does not rely on multiple samples from individuals, 
unlike the sampling intensity required for genetic mark–recapture 
(Puechmaille & Petit,  2007). We found that sampling 60%, 50%, 
and 40% of previously unsampled individuals over 2, 3, and 4 years, 
respectively, yielded accurate estimates. On average, these efforts 
sampled 769, 772, and 793 animals, respectively. Using the geno-
typing costs of 22 USD per sample for concurrent moose genetic 
studies (Rosenblatt, Pers. Comms), this sampling effort cost be-
tween 16,918 and 17,446 USD. Regardless of how sampling efforts 
are spread across years, inadequate sampling effort may yield biased 
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14 of 18  |     ROSENBLATT et al.

and imprecise estimates. Practitioners may save funds by investing 
in shorter survey periods to minimize personnel and logistical costs, 
as longer surveys may require greater investment through time. 
Further savings could be made if sampling focused on smaller areas, 
where local densities are of concern. Importantly, applications could 
minimize the risk of resampling of previously sampled individuals 
to minimize overall costs. Resampling could be reduced if spatially 
based sampling was not only stratified by relative abundance or uti-
lization, but also spaced to ensure sampling was not clustered within 
the home ranges of a limited subset of the population. If resampling 
remains a challenge and there are suitable recaptures of individuals 
to also estimate abundance with genetic CMR approaches, multi-
ple estimates from both pedigree reconstruction and genetic CMR 
methods would prove useful.

Two issues remain with the application of pedigree recon-
struction beyond a simulated application provided here, including 
genotyping error and detection of related individuals beyond par-
ent–offspring relationships over multiple surveys. We assumed clear, 
parent–offspring linkages between related individuals in this simu-
lation study but acknowledge that both issues can add uncertainty 
into abundance estimates. Recent works that utilize SNP arrays for 
wildlife species of concern have demonstrated approaches that re-
duce genotyping errors and reduce false detections of parent–off-
spring relationships (Ekblom et  al.,  2021). Future applications of 
pedigree reconstruction to estimate abundance could benefit from 
rapidly advancing genotyping and documenting efforts to reduce 
genotyping and relationship assignment errors.

4.1  |  Future applications

Designing a sampling strategy for pedigree reconstruction depends 
on the life history and behavior of a target species. Practitioners may 
benefit from documenting demographic and spatial information, 
along with individual identity prior to sampling to establish relation-
ships and avoid future resampling (Creel & Rosenblatt, 2013; Spitzer 
et  al.,  2016). Practitioners might maximize the number of animals 
sampled when designing sample collection, focusing on sampling 
when a species aggregates, across a broad spatial extent. spatially 
based sampling approaches could help meet this challenge, and re-
duce costs from unnecessary resampling of individuals.

Several examples of potential applications of pedigree estima-
tion illustrate its future use. The African lion is individually identi-
fiable (Pennycuick & Rudnai, 1970), highly social, and concentrate 
around the areas of high prey density in groups (Schaller,  1972). 
Lion prides and coalitions remain in a single place for hours or days 
after a successful hunt, allowing for fecal sample collection of mul-
tiple individuals around the kill site (Tambling et al., 2012; Tambling 
& Belton, 2009). Additionally, sampling dispersing individuals aids 
in the inference of parents in populations inhabiting inaccessible 
areas, as noted by Shimozuru et al.'s  (2022) study of brown bears. 
Alternatively, low-density populations with restricted ranges would 

be suitable for pedigree reconstruction. Low-density moose popu-
lations exist along the southern edge of the species distribution in 
eastern North America. Suitable habitat for these moose population 
are often known (e.g., Blouin et al., 2021a, 2021b) and could inform 
spatially based sampling for pedigree reconstruction and aid in the 
monitoring of low-density populations.

More applications of pedigree reconstruction with wild popula-
tions would further advance this novel approach. With the develop-
ments of the pedigree reconstruction approach in this study, studies 
may be able to report a measure of precision for their population 
estimates and use successive sampling across time to accurately 
estimate the conditional probabilities core to pedigree reconstruc-
tion. Additionally, the practical reconstruction of a pedigree comes 
with some uncertainty around the most probable pedigree, which 
could be integrated into the uncertainty around the probabilities un-
derpinning pedigree reconstruction and resulting estimates. Well-
studied populations of easily sampled, social species could easily 
demonstrate and advance the application of this method to be used 
with poorly studied populations of conservation concern.
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APPENDIX 1
A1: The premise behind pedigree reconstruction as an estimator of pop-
ulation size. Individuals in a population belong to one of four mutually 
exclusive and exhaustive states, which sum to the total adult population 
size. Two characteristics dictate which of these population segments 
an individual belongs to, including whether the individual is genetically 
sampled during a survey (with two outcomes: sampled or unsampled), 
and whether that individual is matched to an offspring within the pedi-
gree (with two outcomes: matched or unmatched). Four combinations 
of these two characteristics result in the following matrix:

Sampled (S) Not sampled (~S) Marginals

Matched (M) S,M = matched to 
offspring and 
sampled = Nlinked

~S,M = matched to 
offspring but not 
sampled = Ninferred

Nmatched

Not matched 
(~M)

~S,M = sampled but 
not matched to 
offspring = Nunlinked

~S,~M = not sampled 
and not matched to 
offspring = Ninvisible

Nunmatched

Marginals Nsampled Nunsampled Ntotal

where: Nlinked = sampled individuals identified as a parent to another 
sampled individual(s). Nunlinked = sampled individuals unrelated to other 
sampled individuals. Ninferred = unsampled individuals inferred to exist 
with sampling of offspring and mate. Ninvisible = unsampled individuals 
invisible to pedigree reconstruction.

An estimate of the total population is the sum of the four 
conditions:

The fourth term is unobserved. However, the total number of 
sampled individuals is Nlinked + Nunlinked, and the total number of con-
firmed individual parents is Nlinked + Ninferred. The number of adults in 
any of the four states in the above table can be corrected by the joint 
probability of being in a given state, calculated as the product of two 
conditional probabilities from the pedigree data. For example, the 
two conditional probabilities of being a linked adult are as follows:

Under the key assumption that the probability of being sampled is 
independent from the probability of being matched, an estimate of 
the total population Ntotal is

A2: An example of deriving the conditional, marginal, and joint 
probabilities at the core of pedigree reconstruction. Recalling from 
Appendix 1: A1, individuals exist in one of four segments (in bold):

Condition Sampled Unsampled Marginals

Matched Nlinked Ninferred Nmatched

Unmatched Nunlinked Ninvisible Nunmatched

Marginals Nsampled Nunsampled Ntotal

(1)Ntotal = Nlinked + Nunlinked + Ninferred + Ninvisible.

(2)p(S|M) =
Nlinked

Nlinked + Ninferred

(3)p(M| S) =
Nlinked

Nlinked + Nunlinked

.

(4)Plinked = p(S|M) ∗p(M| S)

(5)Ntotal =
Nlinked

Plinked
.

F I G U R E  A 1 Study area in Vermont, USA (1650 km2; gray 
polygon) where we simulated a spatially explicit moose (Alces 
americanus) population and various genetic sampling schemes. 
Simulated moose ranged primarily around the study area (green 
polygon), though dispersals did occur beyond this area.

F I G U R E  A 2 An example of the simulated spatial sampling used 
in this study. Each cell represents a 1 km2 area, with color values 
indicating the local relative abundance of moose (Alces americanus). 
Cells were randomly selected (enclosed in yellow boxes), stratified 
by relative abundance values.
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Marginal and joint probabilities can be estimated from these fre-
quencies, which allow adult population estimates:

Condition Sampled Unsampled Marginals

Matched plinked pinferred pmatched

Unmatched punlinked pinvisible punmatched

Marginals psampled punsampled 1.00

Under the assumption that the sampling and matched are inde-
pendent characteristics, p(sampled|matched) = p(sampled), and p(ma
tched|sampled) = p(matched). Assuming a beta prior distribution with 
hyperparameters α and β can be established for each psampled and 
pmatched, the binomial successes and failures from the observed pedi-
gree data can be used to update these hyperparameters using the 

Bayesian conjugate solutions, providing a posterior beta distribution 
that reflects the current knowledge of p(sampled) and p(matched):

��

sampled
= � + Nlinked Equation 5 ��

matched
= � + Nlinked Equation 6

��
sampled

= � + Ninferred Equation 7 ��
matched

= � + Nunlinked Equation 8

In this application, prior distributions are vague, with no prior 
knowledge influencing these error distributions. The posterior 
distributions (beta distributions) provide a means of incorporating 
uncertainty into the pedigree reconstruction (Fink, 1997), as ran-
dom values of p(sampled) and p(matched) can be drawn from each 
distribution in a bootstrap simulation, and N-hat is calculated in 
Appendix 1: A1. Confidence intervals on N can be obtained by sum-
marizing the bootstrap results.

 20457758, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10650, W

iley O
nline L

ibrary on [19/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	Advances in wildlife abundance estimation using pedigree reconstruction
	Abstract
	1|INTRODUCTION
	2|METHODS
	2.1|Pedigree reconstruction population estimator
	2.2|Applying updated pedigree reconstruction to a simulated moose population
	2.3|Individual-based model simulation
	2.4|Genetic sampling of simulated individuals
	2.5|Objective 1: Accuracy of updated pedigree reconstruction
	2.6|Objective 2: Spatial sampling effort for accurate population estimates
	2.7|Objective 3: Performance of estimator across varying local animal densities

	3|RESULTS
	3.1|Objective 1: Accuracy of updated pedigree reconstruction
	3.2|Objective 2: Spatial sampling effort for accurate population estimates
	3.3|Objective 3: Performance of estimator across varying local animal densities

	4|DISCUSSION
	4.1|Future applications

	AUTHOR CONTRIBUTIONS
	ACKNO​WLE​DGE​MENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


